Atjaunināt sīkdatņu piekrišanu

Rational Design of Enzyme-Nanomaterials, Volume 571 [Hardback]

Volume editor (Department of Chemistry, University of Connecticut, USA)
  • Formāts: Hardback, 294 pages, height x width: 229x152 mm, weight: 660 g
  • Sērija : Methods in Enzymology
  • Izdošanas datums: 06-May-2016
  • Izdevniecība: Academic Press Inc
  • ISBN-10: 0128046805
  • ISBN-13: 9780128046807
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 191,26 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 294 pages, height x width: 229x152 mm, weight: 660 g
  • Sērija : Methods in Enzymology
  • Izdošanas datums: 06-May-2016
  • Izdevniecība: Academic Press Inc
  • ISBN-10: 0128046805
  • ISBN-13: 9780128046807
Citas grāmatas par šo tēmu:

Rational Design of Enzyme-Nanomaterials, the new volume in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in rational design of enzyme-nanomaterials, and includes sections on such topics as conjugation of enzymes and dextran-aldehyde polymers, improved activity of enzymes bound to titanate nanosheet, nano-layered 'stable-on-the-table' biocatalysts and nanoparticle-based enzyme sensors.

  • Continues the legacy of this premier serial with quality chapters authored by leaders in the field
  • Covers research methods in rational design of enzyme-nanomaterials
  • Contains sections on such topics as conjugation of enzymes and dextran-aldehyde polymers, improved activity of enzymes bound to titanate nanosheet, nano-layered 'stable-on-the-table' biocatalysts, and nanoparticle-based enzyme sensors

Papildus informācija

This new volume in the widely respected Methods in Enzymology series continues the legacy of this premier serial with quality chapters authored by leaders in the field
Contributors ix
Preface xiii
1 Preparation of Biocatalytic Microparticles by Interfacial Self-Assembly of Enzyme--Nanoparticle Conjugates Around a Cross-Linkable Core
1(18)
S.M. Andler
L.-S. Wang
J.M. Goddard
V.M. Rotello
1 Theory
2(4)
2 Equipment
6(1)
3 Materials
6(1)
4 Protocol
7(1)
5 Step 1: Nanoparticle Synthesis
7(3)
6 Step 2: Purification of enzyme
10(2)
7 Step 3: Preparation of the Aqueous Phase and Oil Phase
12(2)
8 Step 4: Microparticle Assembly
14(1)
9 Step 5: Microparticle Washing
15(1)
10 Conclusions
16(3)
References
16(3)
2 Monitoring Enzymatic Proteolysis Using Either Enzyme- or Substrate-Bioconjugated Quantum Dots
19(36)
S.A. Diaz
J.C. Breger
I.L. Medintz
1 Introduction
20(4)
2 Quantification Assay for Observing Modified Kinetics with Enzyme--QD Conjugates
24(10)
3 Enzyme Activity Sensors Based on Transient QD--Enzyme Interactions
34(15)
4 Notes
49(6)
Acknowledgments
50(1)
References
50(5)
3 Intense PEGylation of Enzyme Surfaces: Relevant Stabilizing Effects
55(18)
S. Moreno-Perez
A.H. Orrego
M. Romero-Fernandez
L. Trobo-Maseda
S. Martins-DeOliveira
R. Munilla
G. Fernandez-Lorente
J.M. Guisan
1 Introduction
56(1)
2 Theory
57(5)
3 Protocols
62(6)
4 Inactivation of Modified Enzyme Derivatives
68(2)
5 Conclusions
70(3)
Acknowledgments
71(1)
References
71(2)
4 Immobilization of Lipases on Heterofunctional Octyl--Glyoxyl Agarose Supports: Improved Stability and Prevention of the Enzyme Desorption
73(14)
N. Rueda
J.C.S. dos Santos
R. Torres
C. Ortiz
O. Barbosa
R. Fernandez-Lafuente
1 Theory
74(2)
2 Equipment
76(1)
3 Materials
76(1)
4 Step
1. Preparation of the Support Octyl--Glyoxyl Agarose
77(2)
5 Step
2. Immobilization of Lipases via Interfacial Activation on Octyl--Glyoxyl Agarose
79(3)
6 Step
3. Covalent Immobilization of Adsorbed Lipases on Octyl--Glyoxyl Agarose
82(5)
Acknowledgments
84(1)
References
84(3)
5 Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems
87(26)
J. Shi
Y. Jiang
S. Zhang
D. Yang
Z. Jiang
1 Introduction
88(5)
2 General Procedure of the Design and Construction of Enzyme@capsule Nano/Microsystems Through Biomimetic/Bioinspired Methods
93(4)
3 Some Specific Examples
97(11)
4 Concluding Remarks
108(5)
Acknowledgment
110(1)
References
110(3)
6 Synergistic Functions of Enzymes Bound to Semiconducting Layers
113(22)
K. Kamada
A. Yamada
M. Kamiuchi
M. Tokunaga
D. Ito
N. Soh
1 Introduction
114(2)
2 Fabrication of Enzyme-Intercalated Layered Oxides
116(7)
3 Activity of Enzymes Bound to Titanate Layers
123(2)
4 Photochemical Control of Enzymatic Activity of Oxidoreductases Bound to Layered Oxides
125(4)
5 Biorecognition Using Doped Titanate Layers Modified with Biomolecules
129(1)
6 Magnetic Application of Hybrids Composed of Enzymes and Doped Titanates
130(2)
7 Conclusions
132(3)
Acknowledgments
133(1)
References
133(2)
7 Bioconjugation of Antibodies and Enzyme Labels onto Magnetic Beads
135(16)
B.A. Otieno
C.E. Krause
J.F. Rusling
1 Introduction
136(2)
2 Bioconjugation of Magnetic Beads
138(4)
3 Characterization of Magnetic Bead Bioconjugates
142(4)
4 Integration of Magnetic Beads into Immunoassay
146(5)
Acknowledgment
148(1)
References
148(3)
8 Rationally Designed, "Stable-on-the-Table" NanoBiocatalysts Bound to Zr(IV) Phosphate Nanosheets
151(26)
I.K. Deshapriya
C.V. Kumar
1 Introduction
152(8)
2 Methods
160(17)
References
174(3)
9 Portable Enzyme-Paper Biosensors Based on Redox-Active CeO2 Nanoparticles
177(20)
A. Karimi
A. Othman
S. Andreescu
1 Introduction
178(1)
2 NPs-Based Enzyme Biosensors
179(4)
3 CeO2 NPs for Enzyme Immobilization and Enzyme-Based Biosensors
183(2)
4 Design of a CeO2-Based Colorimetric Enzyme Biosensor
185(5)
5 Comments on the Method
190(7)
Acknowledgments
192(1)
References
192(5)
10 Rational Design of Nanoparticle Platforms for "Cutting-the-Fat": Covalent Immobilization of Lipase, Glycerol Kinase, and Glycerol-3-Phosphate Oxidase on Metal Nanoparticles
197(28)
V. Aggarwal
C.S. Pundir
1 Introduction
198(2)
2 Use of Rationally Designed Nanoscaffolds for Enzyme Binding
200(1)
3 Use of Chitosan for Enhancing Nanoparticle Surface Chemistry
201(1)
4 Experimental
202(23)
References
222(3)
11 BioGraphene: Direct Exfoliation of Graphite in a Kitchen Blender for Enzymology Applications
225(20)
C.V. Kumar
A. Pattammattel
1 Introduction
226(4)
2 Mechanism of Exfoliation
230(1)
3 Tunability of the BioGraphene Characteristics
231(1)
4 Protein Binding to Graphene and Some Biological Applications
232(1)
5 Methods
233(8)
6 Conclusions
241(4)
Acknowledgments
242(1)
References
242(3)
Author Index 245(12)
Subject Index 257
Department of Chemistry, University of Connecticut, USA