Atjaunināt sīkdatņu piekrišanu

E-grāmata: Reactive Distillation Design and Control

3.33/5 (12 ratings by Goodreads)
  • Formāts: PDF+DRM
  • Izdošanas datums: 30-Mar-2009
  • Izdevniecība: Wiley-AIChE
  • Valoda: eng
  • ISBN-13: 9780470377796
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 179,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 30-Mar-2009
  • Izdevniecība: Wiley-AIChE
  • Valoda: eng
  • ISBN-13: 9780470377796
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Whereas chemical processes of reaction and separation are frequently carried out separately and with different equipment, it is sometimes possible to combine the operations using reactive distillation or catalytic distillation, which can lead to smaller inventories of chemical materials and higher energy efficiency. Luyben (chemical engineering, Lehigh U., US) and Yu (National Taiwan U., Taiwan) here present a textbook on steady-state design and dynamic control of reactive distillation systems using rigorous nonlinear models. They discuss both generic ideal and actual chemical systems and provide economic comparisons between conventional multiunit processes and reactive distillation, both in isolation and in plant-wide systems Annotation ©2009 Book News, Inc., Portland, OR (booknews.com)

After an overview of the fundamentals, limitations, and scope of reactive distillation, this book uses rigorous models for steady-state design and dynamic analysis of different types of reactive distillation columns and quantitatively compares the economics of reactive distillation columns with conventional multi-unit processes. It goes beyond traditional steady-state design that primarily considers the capital investment and energy costs when analyzing the control structure and the dynamic robustness of disturbances, and discusses how to maximize the economic and environmental benefits of reactive distillation technology.
Preface xvii
Introduction
1(14)
History
2(1)
Basics of Reactive Distillation
3(4)
Neat Operation Versus Excess Reactant
7(1)
Limitations
8(1)
Temperature Mismatch
8(1)
Unfavorable Volatilities
9(1)
Slow Reaction Rates
9(1)
Other Restrictions
9(1)
Scope
9(1)
Computational Methods
10(1)
Matlab Programs for Steady-State Design
10(1)
Aspen Simulations
10(1)
Reference Materials
11(4)
PART I STEADY-STATE DESIGN OF IDEAL QUATENARY SYSTEM
15(72)
Parameter Effects
17(20)
Effect of Holdup on Reactive Trays
20(2)
Effect of Number of Reactive Trays
22(2)
Effect of Pressure
24(3)
Effect of Chemical Equilibrium Constant
27(2)
Effect of Relative Volatilities
29(3)
Constant Relative Volatilities
30(1)
Temperature-Dependent Relative Volatilities
30(2)
Effect of Number of Stripping and Rectifying Trays
32(1)
Effect of Reactant Feed Location
33(3)
Reactant A Feed Location (NFA)
33(2)
Reactant B Feed Location (NFB)
35(1)
Conclusion
36(1)
Economic Comparison of Reactive Distillation with a Conventional Process
37(34)
Conventional Multiunit Process
38(5)
Assumptions and Specifications
38(2)
Steady-state Design Procedure
40(2)
Sizing and Economic Equations
42(1)
Reactive Distillation Design
43(4)
Assumptions and Specifications
44(1)
Steady-State Design Procedure
45(2)
Results for Different Chemical Equilibrium Constants
47(14)
Conventional Process
47(7)
Reactive Distillation Process
54(7)
Comparisons
61(1)
Results for Temperature-Dependent Relative Volatilities
61(9)
Relative Volatilities
62(2)
Optimum Steady-State Designs
64(5)
Real Chemical Systems
69(1)
Conclusion
70(1)
Neat Operation Versus Using Excess Reactant
71(16)
Introduction
72(1)
Neat Reactive Column
72(3)
Two-Column System with Excess B
75(6)
20% Excess B Case
76(2)
10% Excess B Case
78(3)
Two-Column System with 20% Excess of A
81(4)
Economic Comparison
85(1)
Conclusion
86(1)
PART II STEADY-STATE DESIGN OF OTHER IDEAL SYSTEMS
87(58)
Ternary Reactive Distillation Systems
89(30)
Ternary System Without Inerts
90(9)
Column Configuration
90(1)
Chemistry and Phase Equilibrium Parameters
90(2)
Design Parameters and Procedure
92(2)
Effect of Pressure
94(1)
Holdup on Reactive Trays
94(1)
Number of Reactive Trays
94(1)
Number of Stripping Trays
94(5)
Ternary System With Inerts
99(17)
Column Configuration
99(1)
Chemistry and Phase Equilibrium Parameters
99(1)
Design Parameters and Procedure
100(2)
Effect of Pressure
102(1)
Control Tray Composition
103(2)
Reactive Tray Holdup
105(2)
Effect of Reflux
107(2)
Chemical Equilibrium Constant
109(1)
Feed Composition
109(4)
Number of Reactive Trays
113(1)
Number of Rectifying and Stripping Trays
113(3)
Conclusion
116(3)
Ternary Decomposition Reaction
119(26)
Termary Decomposition Reaction: Intermediate-Boiling Reactant
120(7)
Column Configuration
120(1)
Chemistry and Phase Equilibrium Parameters
120(1)
Design Parameters and Procedure
121(2)
Holdup on Reactive Trays
123(1)
Number of Reactive Trays
124(2)
Number of Rectifying and Stripping Trays
126(1)
Location of Feed Tray
126(1)
Ternary Decomposition Reaction: Heavy Reactant with Two-Column Configurations
127(7)
Column Configurations
127(1)
Chemistry and Phase Equilibrium Parameters
128(1)
Design Parameters and Procedure
128(1)
Reactive Holdup
129(2)
Number of Reactive Trays
131(1)
Number of Rectifying Trays
132(2)
Ternary Decomposition Reaction: Heavy Reactant with One-Column Configurations
134(9)
Feasibility Analysis
134(5)
Column Configuration
139(1)
Design Parameters and Procedure
139(1)
Reactive Tray Holdup
139(1)
Number of Reactive Trays
139(1)
Number of Rectifying Trays
140(3)
Location of Feed Tray
143(1)
Comparison Between These Two Flowsheets
143(1)
Conclusion
143(2)
PART III STEADY-STATE DESIGN OF REAL CHEMICAL SYSTEMS
145(94)
Steady-State Design for Acetic Acid Esterification
147(32)
Reaction Kinetics and Phase Equilibria
147(6)
Reaction Kinetics
147(2)
Phase Equilibria
149(4)
Process Flowsheets
153(5)
Type I Flowsheet: MeAc
153(3)
Type II Flowsheet: EtAc and IPAc
156(1)
Type III Flowsheet: BuAc and AmAc
157(1)
Steady-state Design
158(10)
Design Procedure
158(2)
Optimized Design
160(8)
Process Characteristics
168(7)
MeAc
168(1)
EtAc and IPAc
168(2)
BuAc and AmAc
170(5)
Discussion
175(2)
Conclusion
177(2)
Design of Tame Reactive Distillation Systems
179(34)
Chemical Kinetics and Phase Equilibrium
180(14)
Chemical Kinetics
180(1)
Phase Equilibrium Using Aspen Plus
181(5)
Conceptual Design
186(8)
Component Balances
194(1)
Prereactor and Reactive Column
195(13)
Base Case Design of Reactive Column
195(4)
Effect of Design Parameters on Reactive Column
199(9)
Pressure-Swing Methanol Separation Section
208(1)
Extractive Distillation Methanol Separation Section
209(1)
Economic Comparison
210(2)
Conclusion
212(1)
Design of MTBE and ETBE Reactive Distillation Columns
213(26)
MTBE Process
213(18)
Phase Equilibrium
214(1)
Reaction Kinetics
214(1)
Aspen Plus Simulation Issues
214(1)
Setting up the Aspen Plus Simulation
215(6)
Effect of Design parameters
221(8)
Chemical Equilibrium Model
229(2)
ETBE Process
231(6)
Kinetic Model
231(1)
Process Studied
232(1)
User Subroutine for ETBE
232(2)
Chemical Equilibrium Model
234(2)
Effects of Design parameters
236(1)
Conclusion
237(2)
PART IV CONTROL OF IDEAL SYSTEMS
239(114)
Control of Quaternary Reactive Distillation Columns
241(20)
Introduction
242(1)
Steady-State Design
243(2)
Control Structures
245(1)
Selection of Control Tray Location
246(1)
Closed-Loop Performance
247(2)
CS7-R Sturcture
247(1)
CS7-RR Structure
248(1)
Using More Reactive Trays
249(5)
Steady-State Design
249(1)
SVD Analysis
250(3)
Dynamic Performance of CS7-RR
253(1)
Increasing Holdup on Ractive Trays
254(2)
Rangeability
256(3)
Conclusion
259(2)
Control of Excess Reactant Systems
261(32)
Control Degrees of Freedom
261(2)
Sigle Reactive Column Control Structures
263(15)
Two-Temperature Control Structure
265(7)
Internal Composition control Structure
272(6)
Control of Two-Column System
278(14)
Two-Temperature Control
279(6)
Temperature/Composition Cascade Control
285(7)
Conclusion
292(1)
Control of Ternary Reactive Distillation Columns
293(60)
Ternary System Without Inerts
293(17)
Column Configuration
293(3)
Control Structure CSI
296(4)
Control Structure CS2
300(3)
Control Structure CS3
303(7)
Ternary System With Inerts
310(14)
Column Configuration
310(1)
Control Structure CS1
310(4)
Control Structure CS2
314(6)
Control Structure CS3
320(2)
Conclusion for Ternary A+B⇔ C System
322(2)
Ternary A⇔B+c System: Intermediate-Boiling Reactant
324(10)
Column Configuration
324(2)
Control Structure CS1
326(3)
Control Structure CS2
329(5)
Control Structure CS3
334(1)
Ternary A ⇔ B+C System: Heavy Reactant With Two-Column Confiuration
334(8)
Column Configuration
334(1)
Control Structure CS1
334(1)
Control Structure CS2
335(7)
Ternary A ⇔ B+C System: Heavy Reactant With One-Column Configuration
342(11)
Column Configuration
342(1)
Control Structure CS1
342(2)
Control Structure CS2
344(1)
Control Structure CS3
345(7)
Conclusion for Ternary A ⇔ B+C System
352(1)
PART V CONTROL OF REAL SYSTEMS
353(76)
Control of Reactive Distillations for Acetic Acid Esterification
355(34)
Process Characteristics
355(7)
Process Studies
355(1)
Quantitative Analysis
356(6)
Control Structure Design
362(18)
Selection of Temperature Control Trays
363(3)
Control Struture and Controller Design
366(2)
Performance
368(8)
Alternative Temperature Control Structures
376(4)
Extension to Composition Control
380(8)
Conclusion
388(1)
Plantwide Control Of Tame Reactive Distillation System
389(18)
Process Studied
389(8)
Prereactor
389(1)
Reactive Column C1
390(1)
Extractive Column C2
391(6)
Methanol Recovery Column C3
397(1)
Control Structure
397(6)
Prereactor
397(2)
Reactive Distillation Column C1
399(1)
Extractive Distillation Column C2
399(2)
Methanol Recovery Column C3
401(2)
Results
403(3)
Conclusion
406(1)
Control Of MTBE And ETBE Reactive Distillation Columns
407(22)
MTBE Control
407(11)
Steady State
407(1)
Control Struture with C4 Feedflow Controlled
408(8)
Control Structure With Methanol Feedflow Controlled
416(2)
ETBE Control
418(11)
Control Structure with Flow Control of C4 Feed
419(5)
Control Structure With Flow control of Ethanol Feed
424(5)
PART VI HYDRID AND NONCONVENTIONAL SYSTEMS
429(116)
Design and Control of Column/Side Reactor Systems
431(56)
Introduction
431(2)
Design for Quaternary Ideal System
433(13)
Assumptions and Specifications
434(1)
Reactor and Column Equations
435(1)
Design Optimization Procedure
436(1)
Results and Discussion
437(8)
Reactive Column with Optimum Feed Tray Locations
445(1)
Control of Quaternary Ideal System
446(12)
Dynamic Tubular Reactor Model
446(1)
Control Structures
447(11)
Design of Column/Side Reactor process for Ethyl Acetate System
458(16)
Process Description
458(1)
Conceptual Design
459(15)
Control of Column/Side Reactor Process for Ethyl Acetate System
474(11)
Determining Manipulated Variables
475(4)
Selection of Temperature Control Trays
479(2)
Controller Design
481(1)
Performance
481(4)
Extension to Composition Control
485(1)
Comparison with Reactive Distillation Temperature Control
485(1)
Conclusion
485(2)
Effects of Boiling Point Rankings on the Design of Reactive Distilation
487(32)
Process and Classification
487(5)
Process
487(3)
Classification
490(2)
Relaxation and Convergence
492(3)
Process Configurations
495(16)
One Group
496(5)
Two Groups
501(6)
Alternating
507(4)
Results and Discussion
511(7)
Summary
511(3)
Excess Reactant Design
514(4)
Conclusion
518(1)
Effects of Feed Tray Locations on Design and Control of Reactive Distillation
519(26)
Process Characteristics
519(10)
Modeling
521(1)
Steady-State Design
522(1)
Base Case
522(1)
Feed Locations Versus Reactants Distribution
523(4)
Optimal Feed Locations
527(2)
Effects of Relative Volatilities
529(4)
Changing Relative Volatilities of Reactants
529(1)
Changing Relative Volatilities of Products
530(2)
Summary
532(1)
Effects of Reaction Kinetics
533(5)
Reducing Activation Energies
533(3)
Effects of Preexponential Factor
536(2)
Operation and Control
538(6)
Optimal Feed Location for Production Rate Variation
538(1)
Control Structure
539(2)
Closed-Loop Performance
541(3)
Conclusion
544(1)
Appendix Catalog of Types of Real Reactive Distillation Systems 545(18)
References 563(10)
Index 573
William L. Luyben, PHD, is Professor of Chemical Engineering at Lehigh University. In addition to forty years of teaching, Dr. Luyben spent nine years as an engineer with Exxon and DuPont. He has written nine books and more than 200 papers. He was the 2004 recipient of the Computing Practice Award from the CAST Division of the AIChE and was elected in 2005 to the Process Automation Hall of Fame. CHENG-CHING YU, PHD, has spent sixteen years as a Professor at National Taiwan University of Science and Technology and four years at National Taiwan University. He has published over 100 technical papers in the areas of plant-wide process control, reactive distillation, control of microelectronic processes, and modeling of fuel cell systems.