Atjaunināt sīkdatņu piekrišanu

Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms [Hardback]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Hardback, 1024 pages, height x width x depth: 252x178x48 mm, weight: 2041 g
  • Izdošanas datums: 30-Aug-2019
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1119468698
  • ISBN-13: 9781119468691
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 431,78 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 1024 pages, height x width x depth: 252x178x48 mm, weight: 2041 g
  • Izdošanas datums: 30-Aug-2019
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1119468698
  • ISBN-13: 9781119468691
Citas grāmatas par šo tēmu:

Presents a multidisciplinary analysis of the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS).

Since plants are the main source of our food, the improvement of their productivity is the most important task for plant biologists. In this book, leading experts accumulate the recent development in the research on oxidative stress and approaches to enhance antioxidant defense system in crop plants. They discuss both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance, and cover all of the recent approaches towards understanding oxidative stress in plants, providing comprehensive information about the topics. It also discusses how reactive nitrogen species and reactive sulfur species regulate plant physiology and plant tolerance to environmental stresses.

Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms covers everything readers need to know in four comprehensive sections. It starts by looking at reactive oxygen species metabolism and antioxidant defense. Next, it covers reactive nitrogen species metabolism and signaling before going on to reactive sulfur species metabolism and signaling. The book finishes with a section that looks at crosstalk among reactive oxygen, nitrogen, and sulfur species based on current research done by experts.

  • Presents the newest method for understanding oxidative stress in plants.
  • Covers both the plant responses to oxidative stress and mechanisms of abiotic stress tolerance
  • Details the integration among reactive oxygen species (ROS), reactive nitrogen species (RNS) and reactive sulfur species (RSS)
  • Written by 140 experts in the field of plant stress physiology, crop improvement, and genetic engineering

Providing a comprehensive collection of up-to-date knowledge spanning from biosynthesis and metabolism to signaling pathways implicated in the involvement of RONSS to plant defense mechanisms, Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms is an excellent book for plant breeders, molecular biologists, and plant physiologists, as well as a guide for students in the field of Plant Science.

Volume 1: Reactive Oxygen, Nitrogen and Sulfur Species in Plants
About the Editors
xix
List of Contributors
xxiii
Preface
xxxiii
Section I Reactive Oxygen Species Metabolism and Antioxidant Defense
1(514)
1 Regulated Suicide for Survival: Toward Programmed Cell Death During Reactive Species Mediated-Oxidative Stress of Plant Cells
3(36)
Dibyendu Talukdar
1.1 Introduction
3(1)
1.2 PCD: Versatile But Programmed in Functional Plant Biology
4(1)
1.2.1 Experimental Evidence of PCD in Plant System
5(2)
1.3 PCD through ROS Network in Plant Cell
7(1)
1.3.1 Cellular Organelles: Hub of PCD Components
7(1)
1.3.1.1 PCD: The Chloroplastic Connection
8(1)
1.3.1.2 PCD: The Mitochondrial Drive
10(1)
1.3.1.3 PCD: The Vacuolar Mediation
11(1)
1.3.2 Inter-Organelle Cross Talk in PCD Programming
12(2)
1.4 Mechanisms of ROS-Mediated PCD in Plant Cell
14(1)
1.4.1 ROS-Mediated Disruption of Antioxidant System en Route to PCD
14(1)
1.4.2 ROS-Mediated Disruption of Oxidative Metabolism en Route to PCD
15(1)
1.4.3 ROS-Induced Electrolyte Leakage in PCD Programming
16(1)
1.4.4 ROS-Induced Release of Cytochrome c en Route to PCD
17(1)
1.4.5 Caspase Like Cascade and Its Cross-Talk with Cytochrome c, and Nuclease in Plant PCD
19(1)
1.4.6 ROS to PCD: Cross-Talk via Proteasome Complex
21(1)
1.5 ROS Signaling Network in Regulating Plant PCD
22(1)
1.5.1 Cross Talk Between ROS and RNS Toward PCD
23(1)
1.5.2 Interactive Hormone Signaling Toward PCD via ROS
25(1)
1.5.3 MAP Kinase Cascade in ROS-Driven PCD Events
28(1)
1.5.4 Lipid Signaling and PCD
30(1)
1.6 Future Prospects
31(1)
References
32(7)
2 Iron and Its Catalytic Properties on Radical Generation: Role of Chelators on the Labile Iron Pool (LIP)
39(14)
Elizabeth Robello
Andrea Galatro
Susana Puntarulo
2.1 Introduction
39(1)
2.2 Iron-Dependent Oxidative Metabolism
40(1)
2.3 Role of Chelators on Fe-Dependent Oxidant Production
40(1)
2.4 Cellular Fe Distribution in Plants and Animals
41(3)
2.5 Experimental Alternatives Related to the Operational Definition of LIP
44(3)
2.6 LIP Changes Under Stress Situations in Plants and Animals
47(1)
2.7 Conclusions
48(2)
Acknowledgments
50(1)
References
50(3)
3 Superoxide Dismutases (SODs) and Their Role in Regulating Abiotic Stress induced Oxidative Stress in Plants
53(36)
Panchanand Mishra
Pallavi Sharma
3.1 Introduction
53(2)
3.2 Generation of Reactive Oxygen Species (ROS) and Their Effects in Plants Experiencing Abiotic Stress
55(1)
3.2.1 ROS Generation in Plants
56(1)
3.2.2 Abiotic Stress Induced ROS Generation in Plants
58(1)
3.2.3 ROS Induced Oxidative Damage in Plants
59(1)
3.2.4 ROS Detoxification System in Plants
60(1)
3.3 Superoxide Dismutase (SOD) Isoenzymes in Plants
61(1)
3.3.1 Copper Zinc SODs (Cu-ZnSOD)
61(1)
3.3.2 Iron Superoxide Dismutase (FeSOD) and Manganese Superoxide Dismutase (MnSOD)
64(1)
3.3.3 Cambialistic Superoxide Dismutase (Fe/MnSOD)
66(1)
3.4 Regulation, Expression and Interaction Network of Superoxide Dismutase Isozymes
67(4)
3.5 SOD Mediated Improvement in Abiotic Stress Tolerance in Plants
71(5)
3.6 Concluding Remarks and Future Prospects
76(1)
Acknowledgments
76(1)
References
77(12)
4 The Role of Ascorbate-Glutathione Pathway in Reactive Oxygen Species Balance Under Abiotic Stresses
89(24)
Liudmyla O. Sakhno
Alla I. Yemets
Yaroslav B. Blume
4.1 Introduction
89(1)
4.2 Water Availability
90(1)
4.2.1 Drought
90(1)
4.2.2 Flooding
93(1)
4.3 Salinity
94(3)
4.4 Extreme Temperatures
97(1)
4.4.1 Chilling
97(1)
4.4.2 Heat
98(1)
4.5 Insolation
99(1)
4.5.1 High Insolation
99(1)
4.5.2 Low Insolation
99(1)
4.6 Metals (Metalloids)
99(1)
4.6.1 Al
99(1)
4.6.2 Cd
100(1)
4.6.3 Pb
100(1)
4.6.4 Cu
101(1)
4.6.5 Cr
101(1)
4.7 Nanoparticles
101(1)
4.8 Combination of Stresses
102(2)
4.9 Conclusion
104(1)
Acknowledgment
105(1)
References
105(8)
5 Oxidative Stress and Antioxidant Defense Under Combined Waterlogging and Salinity Stresses
113(30)
Savita Duhan
Anita Kumari
Manohar Lal
Sunita Sheokand
5.1 Introduction
113(2)
5.2 Reactive Oxygen Species (ROS) and Oxidative Stress
115(2)
5.3 Effecti of Oxidative Stress
117(1)
5.3.1 Lipid Peroxidation
117(1)
5.3.2 Membrane Injury
118(1)
5.3.3 Ion Homeostasis and ROS Metabolism
119(1)
5.3.4 Antioxidative Defense System
119(1)
5.4 Enzymatic Components
120(1)
5.4.1 Superoxide Dismutase (SOD)
120(1)
5.4.2 Catalase (CAT)
121(1)
5.4.3 Ascorbate Peroxidase (APX)
122(1)
5.4.4 Peroxidases (PDX)
124(1)
5.4.5 Glutathione Reductase (GR)
125(1)
5.4.6 Dehydroascorbate Reductase (DHAR)
126(1)
5.4.7 Monodehydroascorbate Reductase (MDHAR)
126(1)
5.5 Non-enzymatic Components
127(1)
5.5.1 Ascorbate Content
127(1)
5.5.2 Glutathione Content
129(1)
5.6 Aerenchyma Formation and Root Modifications
130(2)
5.7 Conclusions and Future Projections
132(1)
References
133(10)
6 Role of Polyamines in Protecting Plants from Oxidative Stress
143(16)
Pooja
Vinod Goyal
Santa Devi
Renu Munjal
6.1 Introduction
143(1)
6.2 Discovery of Polyamines
143(1)
6.2.1 Biosynthesis, Catabolism and Biosynthetic Inhibitor of Polyamines
144(1)
6.2.2 Role of Polyamines in Protecting Plants from Oxidative Stress
146(1)
6.3 Important Physiological Effects of Polyamines in Plants
147(1)
6.3.1 Interaction of Polyamines with ROS
147(1)
6.3.2 Cell Proliferation
147(1)
6.3.3 Stress Response
148(1)
6.3.4 Gene Expression
148(1)
6.4 Role of Polyamines in Combating Oxidative Stress
149(1)
6.4.1 Polyamines and Detoxification of ROS
151(1)
6.5 Polyamine and H2O2
152(1)
6.6 Exogenous Polyamine
152(1)
6.7 Conclusion and Future Prospective
152(1)
Abbreviations
153(1)
References
154(5)
7 Role of Glutathione in Plant Abiotic Stress Tolerance
159(14)
Aditya Banerjee
Aryadeep Roychoudhury
7.1 Introduction
159(1)
7.2 GSH Metabolism in Plants
159(1)
7.3 GSH Confers Protection during Abiotic Stress
160(1)
7.3.1 GSH: Variable Redox States
160(1)
7.3.2 The AsA-GSH Cycle (AGC)
161(1)
7.3.3 GSH as an Antioxidant
162(1)
7.3.4 Glutathione S-Transferases (GSTs) Protect against Abiotic Stress
162(1)
7.3.5 GSH Regulation of Transcription and Nitric Oxide Signaling during Stress
163(1)
7.4 GSH Regulates Abiotic Stress Tolerance
163(1)
7.4.1 Exogenous Application of GSH
163(1)
7.4.2 Genetic Engineering Approach
163(1)
7.4.3 The Sub-cellular Distribution of GSH in Response to Abiotic Stresses
164(1)
7.4.3.1 Vacuoles
164(1)
7.4.3.2 Nuclei
167(1)
7.4.3.3 Chloroplasts and Peroxisomes
167(1)
7.5 Conclusion and Future Perspectives
167(1)
Acknowledgments
168(1)
References
168(5)
8 Molecular Approaches in Enhancing Antioxidant Defense in Plants
173(22)
Kanika Khanna
Neha Honda
Poonam Yadav
Vandana Gautam
Vinod Kumar
Puja Ohri
Renu Bhardwaj
8.1 Introduction
173(2)
8.2 Plant Responses to Environmental Stresses
175(2)
8.3 Approaches for Stress Tolerance
177(3)
8.4 Genetic Engineering for Environmental Stresses
180(1)
8.4.1 Genomics
180(1)
8.4.2 Proteomics
181(1)
8.4.3 Metabolomics
184(1)
8.5 Conclusion and Future Prospects
185(1)
References
185(10)
9 Omics in Oxidative Stress Tolerance in Crops
195(30)
Ceyhun Kayihan
Fusun Eyidogan
9.1 Introduction
195(1)
9.2 Genomics
196(1)
9.2.1 Structural Genomics
196(1)
9.2.1.1 Genome Sequencing
196(1)
9.2.1.2 Molecular Markers
197(1)
9.3 Transcriptomics
197(1)
9.3.1 Hybridization-Based Approaches
198(1)
9.3.1.1 Suppression Subtractive Hybridization (SSH)
198(1)
9.3.1.2 Microarrays
198(1)
9.3.2 Sequencing-Based Approaches
199(1)
9.3.2.1 Serial Analysis of Gene Expression (SAGE)
199(1)
9.3.2.2 RNA-Sequencing
199(1)
9.3.3 Plant Transcriptomics Applications
199(1)
9.3.3.1 Salt Tolerance
199(1)
9.3.3.2 Drought Tolerance
201(1)
9.3.3.3 Cold Tolerance
201(1)
9.3.3.4 Nutrient Deficiency and Toxicity
202(1)
9.4 Proteomics
203(1)
9.4.1 Plant Proteomics Applications
204(1)
9.4.1.1 Salt Tolerance
205(1)
9.4.1.2 Drought Tolerance
206(1)
9.4.1.3 Cold Tolerance
207(1)
9.4.1.4 Nutrient Deficiency
208(1)
9.5 Metabolomics
209(1)
9.5.1 Plant Metabolomics Applications
209(1)
9.5.1.1 Salt Tolerance
210(1)
9.5.1.2 Drought Tolerance
211(1)
9.5.1.3 Low-Oxygen Tolerance
212(1)
9.5.1.4 Cold Tolerance
212(1)
9.5.1.5 Nutrient Deficiency and Toxicity
212(1)
9.5.1.6 Oxidative Stress
213(1)
9.6 Conclusions and Outlook
213(1)
References
214(11)
10 Role of Reactive Oxygen Species Signaling in Plant Growth and Development
225(42)
Neveen B. Talaat
10.1 Introduction
225(2)
10.2 ROS Generation
227(2)
10.3 Deleterious Effects of Different Types of ROS on Plant Cells
229(1)
10.4 ROS Detoxification
230(1)
10.5 Regulation of Antioxidant Genes Expression by Different Types of ROS
231(1)
10.5.1 Singlet Oxygen (O21)
231(1)
10.5.2 Superoxide Radical (O2.-)
232(1)
10.5.3 Hydrogen Peroxide (H2O2)
233(1)
10.6 ROS and Redox Signaling
234(2)
10.7 ROS as Long Distance Signal and ROS Waves
236(1)
10.8 ROS Signaling with Hormonal Signaling Networks
237(1)
10.8.1 Abscisic Acid (ABA)
237(1)
10.8.2 Ethylene (ET)
238(1)
10.8.3 Auxin
238(1)
10.8.4 Gibberellins (GAs)
239(1)
10.8.5 Salicylic Acid (SA)
240(1)
10.8.6 Jasmonic Acid (JA)
241(1)
10.8.7 Brassinosteroids (BRs)
242(1)
10.9 Processes Regulated by ROS
242(1)
10.9.1 Plant Growth and Development
242(1)
10.9.2 Cell Death
247(1)
10.9.3 Acclimation to Stressful Conditions
250(2)
10.10 Conclusion and Perspectives
252(1)
Abbreviations
253(1)
References
253(14)
11 Oxidative Stress and Antioxidant Defense in Germinating Seeds: A Q&A Session
267(24)
Andrea Pagano
Chiara Forti
Carla Gualtieri
Alma Balestrazzi
Anca Macovei
11.1 Introduction
267(2)
11.2 Where Are the ROS Production Sites in Seeds?
269(1)
11.3 Where Does ROS Act at a Molecular Level?
269(1)
11.3.1 ROS vs. Lipids
270(1)
11.3.2 ROS vs. Proteins
270(1)
11.3.3 ROS vs. Nucleic Acids
271(1)
11.4 How Do Seeds Protect Themselves from ROS Overdose?
272(1)
11.4.1 Passive Mechanisms
272(1)
11.4.2 Active Mechanisms
273(1)
11.4.3 DDR and ROS in Seeds
274(1)
11.5 How Does ROS Influence Seed Dormancy?
275(1)
11.6 How Does the Crosstalk Between ROS and Phytohormones Influences Seed Germination?
276(2)
11.7 Which Are the Roles of ROS in Seed Priming and Seed Longevity?
278(1)
11.7.1 ROS vs. Seed Priming
278(1)
11.7.2 ROS vs. Seed Longevity
279(1)
11.8 Concluding Remarks
280(1)
References
280(11)
12 Oxidative Stress and Antioxidant Defense in Plants Under Salinity
291(20)
Pedro Garcia-Caparros
Mirza Hasanuzzaman
Maria Teresa Lao
12.1 Introduction
291(1)
12.2 Types of ROS and Damages
292(1)
12.3 Sites of ROS Production
293(1)
12.3.1 Chloroplast
293(1)
12.3.2 Peroxisomes
293(1)
12.3.3 Mitochondria
294(1)
12.3.4 Apoplast
294(1)
12.4 Antioxidant Machinery
294(1)
12.4.1 Enzymatic Antioxidants
294(1)
12.4.1.1 Superoxide Dismutase
294(1)
12.4.1.2 Catalase
296(1)
12.4.1.3 Ascorbate Peroxidise
296(1)
12.4.1.4 Guaiacol Peroxidise
296(1)
12.4.1.5 Glutathione Reductase
297(1)
12.4.1.6 Monodehydroascorbate Reductase
297(1)
12.4.1.7 Dehydroascorbate Reductase
298(1)
12.4.2 Non-enzymatic Antioxidants
298(1)
12.4.2.1 Ascorbic Acid
298(1)
12.4.2.2 Glutathione
298(1)
12.4.2.3 Tocopherol
300(1)
12.4.2.4 Carotenoids
300(1)
12.4.2.5 Flavonoids
301(1)
12.5 Conclusion and Future Perspectives
301(1)
References
302(9)
13 ROS Modulation in Crop Plants Under Drought Stress
311(26)
Giti Verma
Dipali Srivastava
Poonam Tiwari
Debasis Chakrabarty
13.1 Introduction
311(1)
13.2 ROS Generation: An Overview
312(1)
13.2.1 Singlet Oxygen (1O2)
313(1)
13.2.2 Superoxide Radical (O2.-)
313(1)
13.2.3 Hydrogen Peroxide (H2O2)
313(1)
13.2.4 Hydroxyl Radical (OH.)
314(1)
13.3 Site of ROS Production in Plants
314(1)
13.4 Enhanced ROS Production in Drought
315(1)
13.5 ROS Scavenging Mechanism
316(2)
13.6 ROS Scavenging Enzymes During Drought Stress
318(1)
13.6.1 Superoxide Dismutase (SOD)
318(1)
13.6.2 Catalase (CAT)
318(1)
13.6.3 Ascorbate Peroxidase (APX)
319(1)
13.6.4 Glutathione Peroxidase (GPX)
319(1)
13.6.5 Monodehydroascorbate Reductase (MDHAR)
319(1)
13.6.6 Dehydroascorbate Reductase (DHAR)
319(1)
13.6.7 Glutathione Reductase (GR)
320(1)
13.7 Non-Enzymatic ROS Scavenging Under Drought Stress
320(1)
13.7.1 Ascorbic Acid, AsA
320(1)
13.7.2 Tocopherols
320(1)
13.7.3 Glutathione
321(1)
13.7.4 Thioredoxin
321(1)
13.7.5 Peroxiredoxins
321(1)
13.7.6 Glutaredoxin
322(1)
13.8 ROS Signaling Under Drought Stress
322(1)
13.8.1 Hormones and ROS Interaction
322(1)
13.8.1.1 Auxin
322(1)
13.8.1.2 Abscisic Acid
323(1)
13.8.1.3 Brassinosteroids
323(1)
13.8.1.4 Gibberellic Acid
324(1)
13.8.1.5 Jasmonic Acid (JA)
324(1)
13.8.2 ROS and Calcium Signaling
324(2)
13.9 Concluding Remark and Future Perspective
326(1)
Acknowledgment
327(1)
References
327(10)
14 Oxidative Stress and Antioxidant Defense in Plants Under High Temperature
337(16)
Pooja
Renu Munjal
14.1 Introduction
337(1)
14.2 HT Stress Induced by Oxidative Stress in Major Food Crops
338(1)
14.3 Antioxidant Defense System Under HT Stress
338(1)
14.3.1 Enzymatic Antioxidant Defense
338(1)
14.3.2 Non Enzymatic Antioxidant Defense
340(1)
14.3.2.1 Carotenoids
340(1)
14.3.2.2 Anthocyanin
340(1)
14.3.2.3 Glultathione
341(1)
14.3.2.4 Osmolytes
341(1)
14.3.2.5 Plant Hormones
342(1)
14.3.2.6 Nitrous Oxide
343(1)
14.3.2.7 Ascorbic Acid (AsA)
344(1)
14.3.2.8 Polyamines
344(1)
14.3.2.9 Selenium
344(1)
14.4 Transgenic Plants a New Approach to Induce Oxidative Stress Tolerance
345(1)
14.5 Conclusion and Future Prospective
345(1)
Abbreviations
345(1)
References
346(7)
15 Oxidative Stress and Antioxidant Defense in Plants Exposed to Metal/ Metalloid Toxicity
353(18)
Muhammad Arif Ali
Shah Fahad
ldrees Haider
Niaz Ahmed
Shakeel Ahmad
Sajjad Hussain
Muhammad Arshad
15.1 Introduction to Oxidative Stress in Plants
353(1)
15.1.1 Lipids Damages Due to Oxidative Stress
354(1)
15.1.2 Protein Damages Due to Oxidative Stress
356(1)
15.1.3 DNA Damages Due to Oxidative Stress
356(1)
15.2 Metal and Metalloid Toxicity and Oxidative Stress
356(4)
15.3 Production of Antioxidants Due to Metal Toxicity
360(1)
15.4 Mechanism of Antioxidant Defense System in Plants
360(1)
15.4.1 Non-enzymatic Antioxidant Defense System
361(1)
15.4.1.1 Ascorbate (AsA)
361(1)
15.4.1.2 Glutathione
362(1)
15.4.1.3 Tocopherols
362(1)
15.4.1.4 Carotenoids
362(1)
15.4.1.5 Phenolic Compounds
362(1)
15.4.2 Enzymatic Antioxidant Defense System
363(1)
15.4.2.1 Superoxide Dismutase (SOD)
363(1)
15.4.2.2 Catalase (CAT)
363(1)
15.4.2.3 Guaiacol Peroxidase (GPX)
363(1)
15.4.2.4 Enzymes of Ascorbate Glutathione (AsA-GSH) Cycle
364(1)
References
365(6)
16 Oxidative Stress and Antioxidant Defense in Plants Exposed to Ultraviolet Radiation
371(50)
Jainendra Pathak
Rajneesh
Haseen Ahmed
Deepak K. Singh
Prashant R. Singh
Deepak Kumar
Vinod K. Kannaujiya
Shailendra R Singh
Rajeshwar P. Sinha
16.1 Introduction
371(2)
16.2 Effects of UV Radiation on Plants
373(3)
16.3 UV-B Perception
376(2)
16.4 UV-B-induced Signal Transduction and Photomorphogenesis
378(3)
16.5 UV-Induced Oxidative Stress
381(2)
16.6 ROS Signaling in Plants Under Oxidative Stress
383(4)
16.7 ROS Produced in Plants Under Oxidative Stress
387(1)
16.7.1 Singlet Oxygen (1O2)
387(1)
16.7.2 Superoxide Radicals (O2.-)
387(1)
16.7.3 Hydrogen Peroxide (H2O2)
387(1)
16.7.4 Hydroxyl Radicals (OH.)
388(1)
16.8 Lipid Peroxidation (LPO)
388(1)
16.9 Effect of UV on DNA
389(1)
16.10 ROS and Proteins
390(1)
16.11 Effect of UV on Photosynthesis
391(1)
16.11.1 Effect of UV on Ribulose-1,5-bisphosphate Carboxylase/Oxygenase
392(1)
16.12 Localization of the Oxidative Scavenging Pathways in Plants Cells
393(1)
16.13 Metabolism of ROS
394(1)
16.14 Enzymatic Defense
394(1)
16.14.1 Superoxide Dismutase (SOD)
395(1)
16.14.2 Hydrogen Peroxide (H2O2)
395(1)
16.14.3 Ascorbate Peroxidase (APX)
396(1)
16.14.4 Peroxidase (POD)
396(1)
16.14.5 Catalase (CATS)
397(1)
16.15 Non-enzymatic Antioxidants
398(2)
16.16 Conclusions and Future Perspectives
400(1)
Acknowledgements
401(1)
Conflict of Interest
401(1)
References
401(20)
17 Methods/Protocols for Determination of Oxidative Stress in Crop Plants
421(16)
Baskar Venkidasamy
Mahima Karthikeyan
Sathishkumar Ramalingam
17.1 Introduction
421(2)
17.2 ROS Determination in Plants
423(1)
17.3 Estimation of Biochemical Components
423(1)
17.3.1 Total Chlorophyll Estimation
423(1)
17.3.2 Estimation of Anthocyanin
423(1)
17.3.3 Estimation of Malondialdehyde (MDA)
424(1)
17.3.4 Estimation of Proline
424(1)
17.3.4.1 Isatin Paper Assay
424(1)
17.3.4.2 Colorimetric Assay
425(1)
17.3.4.3 Quantification of Proline using HPLC
425(1)
17.3.5 Estimation of Glycine Betaine
425(1)
17.4 Assays for Measurement of Total Antioxidants in Plants
426(1)
17.4.1 Estimation of Non-enzymatic Antioxidants
426(1)
17.4.1.1 Estimation of Ascorbic Acid
426(1)
17.4.1.2 Estimation of Tocopherol
426(1)
17.4.1.3 Estimation of Reduced Glutathione
426(1)
17.4.1.4 Estimation of Total Phenolics and Flavonoids
426(1)
17.4.1.5 Antioxidant Capacity Using DPPH Assay
427(1)
17.4.1.6 Ferric Reducing/Antioxidant Assay (FRAP)
427(1)
17.4.2 Antioxidant Enzyme Assays
427(1)
17.4.2.1 Preparation of Plant Extract for Antioxidant Enzyme Assays
427(1)
17.4.2.2 Estimation of Superoxide Dismutase (SOD)
428(1)
17.4.2.3 Estimation of Catalase (CAT)
428(1)
17.4.2.4 Estimation of Ascorbate Peroxidase (APX)
428(1)
17.4.2.5 Estimation of Glutathione Reductase (GR)
428(1)
17.4.2.6 Estimation of Monodehydroascorbate Reductase (MDHAR)
429(1)
17.4.2.7 Estimation of Dehydroascorbate Reductase (DHAR)
429(1)
17.5 Direct Methods
429(1)
17.5.1 Estimation of H2O2
429(1)
17.5.2 Direct Detection of ROS by Electron Paramagnetic Resonance (EPR)
429(1)
17.5.3 Histochemical Staining Methods
430(1)
17.5.3.1 Estimation of Total ROS Using DCFDA
430(1)
17.5.3.2 Estimation of Superoxide Anion by NBT Staining
430(1)
17.5.3.3 Detection of Singlet Oxygen
430(1)
17.5.3.4 Estimation of H2O2 by DAB Staining
431(1)
17.6 Role of Plants Hormones During Biotic and Abiotic Stress
431(1)
17.7 Estimation of Phytohormones by HPLC-MS/MS
432(1)
17.8 Concluding Perspectives
432(1)
Acknowledgments
433(1)
Conflict of Interest
433(1)
References
433(4)
18 Does Seed Priming Play a Role in Regulating Reactive Oxygen Species Under Saline Conditions?
437(52)
Mohamed Magdy F. Mansour
Esmat Farouk Ali
Karima Hamid A. Salama
18.1 Introduction
437(3)
18.2 Reactive Oxygen Species (ROS)
440(1)
18.2.1 Sites of ROS Synthesis
441(1)
18.2.2 Damaging Effects of ROS
443(1)
18.2.3 Beneficial Effects of ROS
444(2)
18.3 Seed Priming
446(1)
18.3.1 Priming Techniques and Agents
447(1)
18.3.2 Hydro-priming
447(1)
18.3.3 Osmo-Priming
449(1)
18.3.4 Halo-Priming
451(1)
18.3.5 Hormonal Priming
453(1)
18.3.6 Chemical Priming
456(1)
18.3.7 Bio-priming
459(1)
18.3.8 Nutrient Priming
460(2)
18.4 Changes Induced During Seed Priming
462(1)
18.4.1 Physiological Changes
462(1)
18.4.2 Biochemical and Molecular Changes
465(2)
18.5 How Seed Priming Regulates Salt Tolerance?
467(8)
18.6 Conclusions and Future Prospects
475(1)
References
476(13)
19 Computer-Assisted Image Analysis of the Distribution and Intensity of Reactive Oxygen Species Accumulation in Plant Leaves
489(26)
Joanna Sekulska-Nalewajko
Jaroslaw Goclawski
Elzbieta Kuzniak
19.1 Introduction
489(2)
19.2 Plant Material and Histochemical ROS Detection
491(1)
19.3 Image Measurement System Framework
492(1)
19.4 Image Segmentation
493(2)
19.5 Classification of ROS Regions
495(6)
19.6 The Detection of ROS with WRF Classifier
501(3)
19.7 Comparison of ROS Regions Segmentation Results and Accuracy
504(5)
19.8 Conclusions
509(1)
References
510(5)
Section II Reactive Nitrogen Species Metabolism and Signalling
515(130)
20 Role of Nitric Oxide in Physiological and Stress Responses of Plants Under Darkness
517(16)
Peter Poor
Zalan Czekus
Attila Ordog
20.1 Introduction
517(1)
20.2 NO Synthesis and Regulation by Dark
517(3)
20.3 Seedling Growth and Development in the Dark
520(1)
20.4 Dark-Induced Senescence
521(1)
20.5 Dark-Induced Stomatal Closure and Stress Responses
522(2)
20.6 Conclusion and Perspectives
524(1)
Acknowledgments
525(1)
References
525(8)
21 Nitric Oxide and Phytohormones Cross-Talk During Abiotic Stresses Responses in Plants
533(22)
Tariq Shah
Sumbal Wahid
Muhammad Ilyas
Mirza Hasanuzzarnan
21.1 Introduction
533(1)
21.2 NO-Phytohormone Cross Talk Under Drought Stress
534(4)
21.3 NO-phytohormone Cross Talk Under Heavy Metals Stress
538(2)
21.4 NO-phytohormone Cross Talk Under Salinity Stress
540(1)
21.5 NO-phytohormone Cross Talk Under Temperature Stress
541(2)
21.6 NO-phytohormone Cross Talk Under Other Abiotic Stresses
543(2)
21.7 Conclusion and Future Perspectives
545(1)
References
545(10)
22 The Role of Nitric Oxide in the Antioxidant Defense of Plants Exposed to UV-B Radiation
555(18)
Raul Cassia
Melina Amenta
Maria Belen Fernandez
Macarena Nocioni
Valeria Davila
22.1 Introduction: What Is UV-B and How Much UV-B Is Reaching the Earth?
555(1)
22.2 UV-B Is a Stressor and a Signal
556(1)
22.3 How Does UV-B Produce ROS?
556(1)
22.4 Endogenous Nitric Oxide Is a Component of the UV-B Response in Plants
557(1)
22.5 Genes Participating on the UV-B Response Are Regulated by NO
558(1)
22.6 Are the Nitric Oxide and the UV-B Receptor UVR8 Work Coordinately in the Response of Arabidopsis to UV-B?
558(3)
22.7 Nitric Oxide Positively Influences the Stability of UVR8
561(2)
22.8 A Comprehensive Model of NO Role in the Antioxidant Response of Plants to UV-B
563(1)
22.9 Other Components of the Aantioxidant System: GSH as a Redox Buffer. GSNO as NO Reservoir SNO and S-Nitrosylation
564(1)
22.10 Different Effects of NO in the Regulation of the Antioxidant System
564(2)
22.11 Conclusion and Perspectives
566(1)
Acknowledgments
567(1)
References
567(6)
23 Reactive Oxygen Species and Nitric Oxide Production, Regulation and Function During Defense Response
573(18)
Eliana Molina-Moya
Laura C Terron-Camero
Leyre Pescador-Azofra
Luisa M. Sandalio
Maria C. Romero-Puertas
23.1 Introduction
573(1)
23.2 ROS and NO Metabolism in Plants
574(1)
23.3 ROS and NO Production and Regulation During Basal Resistance: PTI Response
575(2)
23.4 ROS and NO Production and Regulation During Incompatible Interaction: Hypersensitive Response (HR)
577(2)
23.5 ROS and NO Function During Plant Immunity
579(3)
23.6 Conclusions
582(1)
Acknowledgments
582(1)
References
582(9)
24 Role of Nitric Oxide in Growth Regulation and Re-orientation of Pollen Tubes
591(18)
Tariq Shah
Mehmood Ali Noor
Mirza Hasanuzzaman
24.1 Introduction
591(1)
24.2 Role of NO in Sexual Reproduction
592(2)
24.3 NO Signaling: Multitasking in Plants
594(3)
24.4 NO; an Effective Weapon for Plant Defense
597(1)
24.5 Search for NO-Sensing Molecules in Plants
598(3)
24.6 Conclusions
601(1)
References
602(7)
25 Nitric Oxide (NO)-Mediated Plant Stress Signaling
609(18)
L.V. Dubovskaya
Y.S. Bakakina
25.1 Introduction
609(2)
25.2 Molecular Mechanisms of NO Signaling
611(1)
25.2.1 cGMP-Mediated NO Signaling
611(1)
25.2.2 Interplays Between NO, cADPR and Ca2+
612(1)
25.2.3 cGMP-Independent NO-Signaling
613(2)
25.3 NO and Abiotic/Biotic Stress Signaling
615(1)
25.3.1 NO and Abiotic Stresses
615(1)
25.3.2 NO and Biotic Stress Responses
617(1)
25.3.3 NO and Oxidative Burst
618(1)
25.4 Conclusion
619(1)
References
620(7)
26 S-Nitrosoglutathione (GSNO) and Plant Stress Responses
627(18)
Anjali Khajuria
Shogun Bali
Priyanka Sharma
Ravinderjit Kaur
Shivam Jasrotia
Poonam Saini
Puja Ohri
Renu Bhardwaj
26.1 Introduction
627(1)
26.2 Synthesis of S-Nitrosoglutathione
628(1)
26.2.1 Biological Mechanism of GSNO Synthesis
628(1)
26.2.1.1 Routes for GSNO Formation
628(2)
26.3 Catabolism of GSNO
630(1)
26.4 Role of GSNO in Plants
630(1)
26.5 Cross-Stalk with Other Molecules
631(1)
26.5.1 Auxin
632(1)
26.5.2 Gibberellins
634(1)
26.5.3 Cytokinins
634(1)
26.5.4 NO and Other Signaling Molecules
635(1)
26.6 GSNO During Stress in Plants
636(2)
26.7 Conclusion
638(1)
References
638(7)
Volume 2: Reactive Oxygen, Nitrogen and Sulfur Species in Plants
About the Editors
xi
List of Contributors
xv
Preface
xxi
Section III Reactive Sulfur Species Metabolism and Signaling
645(132)
27 Hydrogen Sulfide in Guard Cell Signaling
647(10)
Carlos Garcia-Mata
27.1 Introduction
647(1)
27.1.1 Guard Cells
647(1)
27.2 Hydrogen Sulfide
648(1)
27.2.1 Hydrogen Sulfide Biology in Guard Cells
649(1)
27.2.2 H2S and ABA in Guard Cell Signaling
649(1)
27.2.3 H2S and Ethylene in Guard Cell Signaling
650(1)
27.2.4 H2S and ROS in Guard Cell Signaling
651(1)
27.2.5 H2S and NO in Guard Cell Signaling
651(1)
27.3 Conclusion and Perspectives
652(1)
Acknowledgments
653(1)
References
653(4)
28 Hydrogen Sulfide: A New Gasotransmitter in Plant Defenses
657(12)
Yanjie Zhang
Yanxi Pei
Guangdong Yang
28.1 Introduction
657(1)
28.2 H2S Biosynthesis
657(2)
28.3 The Physiological Functions of H2S
659(1)
28.4 Drought and Salt Stress
659(1)
28.5 Extreme Temperature Stress
660(1)
28.6 Heavy Metal and Metalloid Stress
660(1)
28.7 Pathogen Stress
661(1)
28.8 Interactions Between H2S and Other Signal Molecules
661(1)
28.9 H2S and Other Phytohormones
661(1)
28.10 H2S and ROS
662(1)
28.11 Cross-Talk Between H2S and Other Gasotransmitters
663(1)
28.12 Conclusion and Prospective
663(1)
References
664(5)
29 Interplay Between Hydrogen Sulfide and Calcium Signaling in Plant Abiotic Stress Response and Adaptation
669(16)
Zhong-Guang Li
29.1 Introduction
669(1)
29.2 Hydrogen Sulfide Signaling
670(1)
29.3 Calcium Signaling
671(1)
29.4 Interplay Between Hydrogen Sulfide and Calcium Signaling
672(1)
29.5 Heat Stress and Heat Tolerance
673(1)
29.6 Heavy Metal Stress and Adaptation
674(2)
29.7 Drought Stress and Stomatal Movement
676(3)
29.8 Conclusion and Perspective
679(1)
References
680(5)
30 Reactive Sulfur Species-Key Regulators of Abiotic Stress Tolerance in Plants
685(30)
Fahim Nawaz
Sadia Majeed
Khawaja Shafique Ahmad
Muhammad Aqib
Muhammad Asif Shehzad
Muhammad Aurangzaib
Muhammad Shahbaz
30.1 Introduction
685(1)
30.2 Sulfate Uptake, Transport and Assimilation
686(1)
30.3 Physiological Functions of S Metabolites
687(1)
30.4 Sulfur Metabolism: Regulation and Role in Stress Tolerance
688(1)
30.4.1 Salinity
688(1)
30.4.2 Drought
694(1)
30.4.3 Metal Toxicity
696(1)
30.4.4 High or Low Temperature
698(1)
30.5 Conclusion and Future Perspectives
699(1)
Abbreviations
700(1)
References
701(14)
31 Reactive Sulfur Species: A New Player in Plant Physiology?
715(14)
Martin Clemens Gruhlke
31.1 Introduction
715(1)
31.2 Reactive Sulfur Species Generation and Its Interplay with ROS
716(2)
31.3 Hydrogen Sulfide as Non-Radical Reducing RSS
718(1)
31.3.1 General Overview
718(1)
31.3.2 Biosynthesis of H2S
719(1)
31.3.3 How Acts H2S Biochemically?
719(1)
31.4 Role for RSS in Plant Development: Allicin as RSS Affects Root Growth
720(1)
31.5 Reactive Sulfur Species: From Fertilization to Induction of the Plant's Resistance
721(2)
31.6 Reactive Sulfur Species as Defense Molecules in Plants and Its Mode of Action in Microbes
723(1)
31.7 Conclusion and Outlook
724(1)
Acknowledgment
724(1)
Abbreviations
725(1)
References
725(4)
32 Role of Reactive Sulfur Species in the Oxidative Metabolism in Plants
729(14)
Muhammad Ijaz
Qasim Ali
Shah Fahad
Sana Ashraf
Muhammad Shahid
Shakeel Ahmad
Mirza Hasanuzzaman
32.1 Introduction
729(2)
32.2 Reactive Sulfur Species (RSS)
731(1)
32.3 Sources/Production of Reactive Sulfur Species
732(1)
32.4 Mechanism Involved in the Production of RSS
732(2)
32.5 Role of Reactive Sulfur Species in Plant Metabolism
734(1)
32.5.1 Oxidative Species Scavenging Systems in Plant Cells
735(1)
32.5.2 Antioxidant Molecules and Redox Cofactors
736(1)
32.5.2.1 Glutathione (GSH)
736(1)
32.5.2.2 Ascorbate
736(1)
32.5.2.3 Alpha-Tocopherol
736(1)
32.5.2.4 Carotenoids and Flavonoids
736(1)
32.5.2.5 NAD(P)+
736(1)
32.5.2.6 Flavin
737(1)
32.5.3 Antioxidant Enzymes
737(1)
32.5.3.1 Thioredoxin System (TRXs)
737(1)
32.5.3.2 Glutathione-Dependent System
737(1)
32.5.3.3 Peroxiredoxin (PRXs)
738(1)
32.5.3.4 Glutathione S-Transferase (GSTs)
738(1)
32.5.3.5 Ascorbate Peroxidase (APX)
738(1)
32.6 Conclusion
739(1)
Abbreviations
739(1)
References
740(3)
33 Hydrogen Sulfide in Plant Abiotic Stress Tolerance: Progress and Perspectives
743(34)
Parankusam Santisree
Sriyani S. Adimulam
Pradeepreddy Bommineni
Pooja Bhatnagar-Mathur
Kiran K. Sharma
33.1 Introduction
743(1)
33.1.1 H2S Synthesis and Functions in Plants
743(1)
33.1.2 Detection Methods, Donors and Inhibitors of H2S
746(2)
33.2 H2S in Plant Abiotic Stress Tolerance
748(1)
33.2.1 H2S and Its Interaction with Other Signaling Molecules During Plant Abiotic Stress
753(1)
33.2.2 Role of H2S in Salinity Stress
754(1)
33.2.3 Role of H2S in UV-B Stress
755(1)
33.2.4 Role of H2S in Flooding Tolerance
756(1)
33.2.5 Role of H2S in Heat Stress Tolerance
757(1)
33.2.6 Role of H2S in Cold Tolerance
759(1)
33.2.7 Role of H2S in Drought Tolerance
760(1)
33.2.8 Role of H2S in Heavy Metal and Other Metalloid Stresses
762(4)
33.3 Conclusions and Future Prospects
766(1)
Acknowledgments
767(1)
References
767(10)
Section IV Crosstalk Among Reactive Oxygen, Nitrogen and Sulfur Species
777(170)
34 Reactive Oxygen Species, Reactive Nitrogen Species and Oxidative Metabolism Under Waterlogging Stress
779(34)
Manohar Lal
Anita Kumari
Pooja
Sunita Sheokand
34.1 Introduction
779(1)
34.2 Reactive Oxygen Species and Oxidative Stress
780(2)
34.3 Site of ROS Production
782(1)
34.4 ROS Metabolism and Oxidative Damage Under Waterlogging Stress
783(2)
34.5 Antioxidative Metabolism Under Waterlogging Stress
785(1)
34.5.1 Superoxide Dismutase (SOD)
786(1)
34.5.2 Catalase (CAT)
787(1)
34.5.3 Peroxidase (PDX)
788(1)
34.5.4 Ascorbate Peroxidase (APX)
788(1)
34.5.5 Glutathione Reductase (GR)
789(1)
34.5.6 Dehydroascorbate Reductase (DHAR)
790(1)
34.5.7 Monodehydroascorbate Reductase (MDHAR)
791(1)
34.6 Antioxidant Metabolites
791(1)
34.6.1 Ascorbate
791(1)
34.6.2 Glutathione
792(1)
34.7 Reactive Nitrogen Species (RNS) and Nitrosative Stress
793(2)
34.8 RNS Metabolism Under Waterlogging Stress
795(2)
34.9 Interaction of NO with Plant Hemoglobins
797(1)
34.10 RNS and Antioxidant Metabolism
798(1)
34.11 Aerenchyma Formation Under Waterlogging
798(1)
34.12 Conclusions and Future Perspectives
799(2)
References
801(12)
35 Reactive Oxygen and Nitrogen Species in Stress-Induced Programmed Death of Plant Cultured Cells
813(8)
Massimo Malerba
Raffaella Cerana
35.1 Introduction
813(1)
35.2 Reactive Oxygen Species in PCD of Plant Cultured Cells
814(2)
35.3 Reactive Nitrogen Species in PCD of Plant Cultured Cells
816(1)
35.4 Conclusion and Future Perspectives
817(1)
References
818(3)
36 Finding a Place for NO in Everyday Plant Life
821(20)
Svetlana Batasheva
Farit Abdrakhimov
Guzel Akhtyamova
Larisa Khamidullina
Vladimir Chikov
36.1 Introduction
821(1)
36.2 Nitric Oxide Synthesis and Modes of Action in Higher Plants
822(2)
36.3 NO Effects on Photosynthesis
824(2)
36.4 NO and NO3- Signaling
826(1)
36.5 The Influence of NO on Photoassimilate Partitioning and Sink-Source Relations
827(2)
36.6 Role of NO in Plant Sensing of its C to N Balance and Switching between Primary and Secondary Metabolism
829(3)
36.7 Conclusion and Future Perspectives
832(1)
References
833(8)
37 H2O2, NO and H2S: Tailoring in Suiting Plants against Abiotic Stresses
841(16)
Cristiane J. da-Silva
Ana Claudia Rodrigues
Luzia V. Modolo
37.1 Introduction
841(3)
37.2 Interplay Between Hydrogen Peroxide and Nitric Oxide
844(2)
37.3 Interplay Between Hydrogen Peroxide and Hydrogen Sulfide
846(1)
37.4 Interplay Between Nitric Oxide and Hydrogen Sulfide
847(2)
37.5 Interplay Among Hydrogen Peroxide, Nitric Oxide, and Hydrogen Sulfide
849(1)
Acknowledgments
850(1)
References
850(7)
38 Cross Talk Among Reactive Oxygen, Nitrogen and Sulfur During Abiotic Stress in Plants
857(16)
Parminder Kaur
Neha Handa
Vinod Verma
Polak Bakshi
Rashami Kalia
Shelja Sareen
Avinash Nagpal
Adarsh Pal Vig
Bilal Ahmad Mir
Renu Bhardwaj
38.1 Introduction
857(1)
38.2 Cellular Generation of Free Radicals
858(1)
38.2.1 Reactive Oxygen Species (ROS)
858(1)
38.2.2 Reactive Nitrogen Species (RNS)
859(1)
38.2.3 Reactive Sulfur Species (RSS)
862(1)
38.3 Role of Free Radicals in Plant Defense Under Abiotic Stress
863(3)
38.4 Crosstalk Among ROS, RNS and RSS Under Abiotic Stress
866(1)
38.5 Conclusion and Future Prospects
866(1)
References
867(6)
39 Emerging Technologies for Enhancing ROS/RNS Homeostasis
873(50)
Alla I. Yemets
Yuriy V. Karpets
Yuriy E. Kolupaev
Yaroslav B. Blume
39.1 Introduction
873(1)
39.2 ROS/RNS Homeostasis in Plants
874(1)
39.2.1 Reactive Oxygen Species Generation and Scavenging in Plants
874(1)
39.2.2 Nitric Oxide Generation and Function in Plants
877(1)
39.2.2.1 Mechanisms of Formation and Scavenging of Nitric Oxide
877(1)
39.2.2.2 The Main Functions of Nitric Oxide at Plants
878(1)
39.2.3 Interplay Between Nitric Oxide and Reactive Oxygen Species
879(1)
39.2.3.1 Influence of Nitric Oxide on Activity of NADPH Oxidase
880(1)
39.2.3.2 Influence of Nitric Oxide on Activity of Antioxidant Enzymes
880(1)
39.2.3.3 Interaction of Nitric Oxide with Glutathione
883(1)
39.2.3.4 Direct Interaction of ROS and NO
883(1)
39.2.3.5 Influence of NO on Activity of Alternative Oxidase
883(1)
39.3 Application of Nitric Oxide Donors for Induction of Abiotic Stress Resistance
883(1)
39.3.1 Drought
884(1)
39.3.2 Salt Stress
887(1)
39.3.3 Extreme Temperatures and NO
888(1)
39.3.3.1 Hypothermia
888(1)
39.3.3.2 Hyperthermia
890(2)
39.3.4 Heavy Metal Stress
892(2)
39.4 Perspectives for Nitric Oxide Donors in Agriculture
894(1)
39.4.1 Seed Vigor and Dormancy
894(1)
39.4.2 Ripening and Post Harvested Shelf Life
896(1)
39.4.3 Nitric Oxide Donors for Biotechnological Applications in Wound Healing
898(1)
39.5 The Ways for Improvement of NO Donor Application
899(1)
39.5.1 Co-application of Nitric Oxide Donors with Fertilizers
899(1)
39.5.2 Perspectives on the Use of Nanoparticles Releasing Nitric Oxide in Produce and Crop Industry
900(1)
39.6 Transgenic Approaches and Genome Editing for Regulation of ROS/NOS Homeostasis
901(1)
39.6.1 Transgenic Approaches to Regulate Antioxidant Defense System and Nitric Oxide Production
901(1)
39.6.2 Perspectives for Regulation of Micro RNAs and Nitric Oxide Cross Talk in Stress Tolerance in Plants
903(1)
39.6.3 Genome Editing and Synthetic Biology
904(1)
References
905(18)
40 Compartmentalization of Reactive Oxygen Species and Nitric Oxide Production in Plant Cells
923(24)
Martina Janku
Tereza Ticha
Lenka Luhova
Marek Petrivalsky
40.1 Introduction
923(3)
40.2 Subcellular Localization of ROS and NO Production in Plant Cells
926(1)
40.2.1 Cell Wall, Apoplastu and Cytoplasmic Membrane
926(1)
40.2.2 Cytosol
929(1)
40.2.3 Mitochondria
931(1)
40.2.4 Chloroplasts
932(1)
40.2.5 Peroxisomes
934(1)
40.2.6 Glyoxysomes
935(1)
40.2.7 Endoplasmic Reticulum
935(1)
40.3 Conclusions and Future Perspectives
936(1)
References
936(11)
Index 947
About the Editors

Mirza Hasanuzzaman, is Professor in the Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.

Vasileios Fotopoulos, is Assistant Professor in the Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus.

Kamrun Nahar, is Associate Professor in the Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.

Masayuki Fujita, is Professor at the Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Japan.