Atjaunināt sīkdatņu piekrišanu

E-grāmata: Reactive Transport Modeling: Applications in Subsurface Energy and Environmental Problems

Edited by , Edited by , Edited by , Consultant editor
  • Formāts: PDF+DRM
  • Izdošanas datums: 12-Mar-2018
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119060017
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 203,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: PDF+DRM
  • Izdošanas datums: 12-Mar-2018
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119060017
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems 

This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls.

Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include:

  • A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM)
  • Presented by internationally known experts in the field
  • Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas
  • Teaches readers to appreciate the power of RTM and to stimulate usage and application

Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists. 

List of Contributors xv
Preface xvii
Acknowledgements xxi
1 Application of Reactive Transport Modeling to CO2 Geological Sequestration and Chemical Stimulation of an Enhanced Geothermal Reservoir 1(60)
Tianfu Xu
Hailong Tian
Jin Na
1.1 Introduction
1(1)
1.2 Fundamental Theories
2(6)
1.2.1 Governing Equations for Flow and Transport
2(1)
1.2.2 Equations for Chemical Reactions
3(3)
1.2.3 Solution Method for Transport Equations
6(1)
1.2.4 Solution Method for Mixed Equilibrium-Kinetics Chemical System
7(1)
1.3 Application to CO2 Geological Storage (CGS)
8(37)
1.3.1 Overview of Applications in CGS
8(2)
1.3.2 Long-Term Fate of Injected CO2 in Deep Saline Aquifers
10(16)
1.3.2.1 Brief Description of CO2 Storage Site in the Songliao Basin
10(1)
1.3.2.2 Conceptual Model
11(3)
1.3.2.3 Results and Discussion
14(7)
1.3.2.4 Summary and Conclusions
21(5)
1.3.3 Evolution of Caprock Sealing Efficiency after the Intrusion of CO2
26(19)
1.3.3.1 Introduction
26(1)
1.3.3.2 Geological Setting
27(1)
1.3.3.3 Conceptual Model
27(5)
1.3.3.4 Results and Discussion
32(12)
1.3.3.5 Concluding Remarks
44(1)
1.4 Reactive Transport Modeling for Chemical Stimulation of an Enhanced Geothermal Reservoir
45(9)
1.4.1 General Description
45(2)
1.4.2 Brief Description of the EGS Site in Songliao Basin
47(1)
1.4.3 Conceptual Model
47(3)
1.4.3.1 Geometry and Boundary Conditions
47(1)
1.4.3.2 Physical Parameters
48(1)
1.4.3.3 Initial Mineral Composition
48(1)
1.4.3.4 Water Chemistry
49(1)
1.4.3.5 Thermodynamic and Kinetic Parameters
49(1)
1.4.4 Results and Discussion
50(2)
1.4.4.1 HCl Preflush
50(1)
1.4.4.2 Mud Acid Main Flush
50(2)
1.4.5 Concluding Remarks
52(2)
1.5 Conclusions and Outlook
54(1)
Appendix A
55(1)
Acknowledgements
56(1)
References
56(5)
2 Modeling Reactive Transport in CO2 Geological Storage: Applications at the Site Scale and Near-Well Effects 61(46)
Pascal Audigane
Irina Gaus
Fabrizio Gherardi
2.1 Introduction
61(4)
2.2 Short-and Long-term Predictive Simulations of Trapping Mechanisms
65(15)
2.2.1 Sandy Aquifer: Predictions of Long-term Effects of Storage in Sleipner, North Sea, Norway
69(3)
2.2.2 Near-well Effects in Saline Aquifers in Carbonate Formations: Carbonate Dissolution, Drying, and Salt Crystallization in the Dogger, Paris Basin
72(5)
2.2.3 Depleted Offshore Gas Field: Mixing with Methane K 12B Field
77(3)
2.3 Studying CO2 Leakage and Well Integrity by Reactive Transport Modeling
80(12)
2.3.1 Near-well Problem in the Paris Basin
81(9)
2.3.1.1 Weathering of Drilling Cement Prior to Injection
81(3)
2.3.1.2 Cement-Reservoir-Caprock Interface
84(6)
2.3.2 The Impact of CO2 Leakage on Groundwater
90(2)
2.4 Discussion and Conclusion
92(6)
References
98(9)
3 Process-based Modelling of Syn-depositional Diagenesis 107(50)
Fiona Whitaker
Miles Frazer
3.1 Introduction
107(1)
3.2 Fundamentals of Syn-depositional Carbonate Diagenesis
108(3)
3.3 Understanding Syn-depositional Diagenesis through RTM
111(9)
3.3.1 Marine Diagenesis
111(2)
3.3.2 Vadose Zone Diagenesis
113(3)
3.3.3 Freshwater Lens Diagenesis
116(2)
3.3.4 Mixing Zone Diagenesis
118(2)
3.4 Challenges in Reactive Transport Modelling of Syn-depositional Diagenesis
120(4)
3.5 Coupled Forward Stratigraphic-Diagenetic Models
124(21)
3.5.1 Stratigraphic Forward Models (SFMs)
124(1)
3.5.2 Carbonate Diagenesis and Sequence Stratigraphy
124(2)
3.5.3 Integrating Diagenesis into SFMs-1D and 2D Modelling
126(2)
3.5.4 3D Forward Stratigraphic-Diagenetic Models (FSDMs)
128(2)
3.5.5 Application of CARB3D+ to Understanding Carbonate Sedimentation and Syn-sedimentary Diagenesis
130(35)
3.5.5.1 Prediction of Sediment Distribution and Platform Architecture using CARB3D+
131(6)
3.5.5.2 FSDM-Simulation of Diagenetic Hydrozones
137(3)
3.5.5.3 FSDM-Simulation of Diagenetic Processes
140(5)
3.6 Discussion and Conclusion
145(3)
Acknowledgements
148(1)
References
148(9)
4 Reactive Transport Modeling and Reservoir Quality Prediction 157(80)
Yitian Xiao
Gareth D. Jones
4.1 Fundamental Challenges in Reservoir Quality Prediction
157(7)
4.2 Reactive Transport Modeling Approach
164(1)
4.3 Modeling Dolomitization in Different Hydrogeological Systems
165(35)
4.3.1 Dolomitization and Impact on Carbonate Reservoir Quality: From Reservoir to Outcrop Observations
165(3)
4.3.2 Conceptual Hydrological Models of Dolomitization
168(3)
4.3.3 Geothermal Convection Models
171(2)
4.3.4 Mixing Zone Models
173(4)
4.3.4.1 Traditional Mixing Zone Model
173(2)
4.3.4.2 Ascending Freshwater-Mesohaline Brine Mixing Model: La Molata Miocene Outcrop Case Study
175(2)
4.3.5 Reflux Dolomitization Models
177(18)
4.3.5.1 2D Simulations of Brine Reflux Dolomitization
177(4)
4.3.5.2 3D Simulations of Brine Reflux Dolomitization
181(8)
4.3.5.3 Brine Reflux Dolomitization Case Studies
189(6)
4.3.6 Fault-Controlled Hydrothermal Models
195(5)
4.3.6.1 2D and 3D Conceptual HTD Models
196(1)
4.3.6.2 Fault-controlled Dolomitization at the Benicassim Outcrop in Maestrat Basin, Spain
196(4)
4.3.7 Summary of Dolomite RTM Results
200(1)
4.4 Early Diagenesis in Isolated Carbonate Platforms
200(1)
4.5 Geothermal Convection and Burial Diagenesis
201(7)
4.5.1 Geothermal Convection and Reservoir Quality in Tengiz Field, Kazakhstan
202(1)
4.5.2 Geothermal Convection in South Atlantic Pre-Salt Rift Carbonates
203(5)
4.6 Burial Diagenesis: Fault-Controlled Illitization
208(3)
4.6.1 Illitization and Permeability Reduction in Rotliegendes Play, Germany
208(1)
4.6.2 1D and 2D Reactive Transport Models
208(3)
4.7 Diagenesis and Reservoir Alteration Associated with Oil and Gas Operations
211(10)
4.7.1 CO2 and Acid Gas Injection (AGI) in Siliciclastic and Carbonate Reservoirs
211(1)
4.7.2 Reactive Transport Model Setup
212(1)
4.7.3 Simulation Results: Injection in Siliciclastic Reservoirs
212(1)
4.7.3.1 Feldspar-Rich Sandstone Reservoir
212(1)
4.7.3.2 Quartz-Dominated Sandstone Reservoir
212(1)
4.7.4 Simulation Results: Injection in Carbonate Reservoirs
213(3)
4.7.4.1 Limestone Reservoir
213(2)
4.7.4.2 Dolomite Reservoir
215(1)
4.7.5 Summary of CO2 and Acid Gas Injection and Reservoir Alteration
216(2)
4.7.6 Reservoir Alteration from Steam and Acid Injection
218(20)
4.7.6.1 Case Study: RTM of Steam Flood in Eocene Carbonate Reservoir, Wafra Field
220(1)
4.8 The Present and Future Role of Reactive Transport Models for Reservoir Quality Prediction
221(5)
Acknowledgements
226(1)
References
227(10)
5 Modeling High-Temperature, High-Pressure, High-Salinity and Highly Reducing Geochemical Systems in Oil and Gas Production 237(82)
Guoxiang Zhang
Jeroen Snippe
Esra Inan-Villegas
Paul Taylor
5.1 Introduction
237(1)
5.2 Drivers of the Geochemical Reactions in 4-High Reservoirs During Oil and Gas Production
238(4)
5.2.1 High Temperature
238(1)
5.2.2 High Pressure
239(1)
5.2.3 Salinity, pH and Alkalinity
240(1)
5.2.4 Contrast in Redox Potential
240(2)
5.3 Typical Geochemical Processes in the 4-High Reservoir During HC Production and the Impacts on Production
242(13)
5.3.1 Scaling of Wells and Near Wellbore Formation Rocks by Carbonate Precipitation
242(1)
5.3.2 Well Scaling by Precipitation of Sulfate Minerals
243(1)
5.3.3 Scaling Due to Precipitation of Other Minerals
243(1)
5.3.4 Scaling Due to Combined Precipitation of Multiple Minerals, Solid Solution and/or Fines Migration
244(1)
5.3.5 Souring by Thermochemical Sulfate Reduction (TSR) during HC Production
245(2)
5.3.6 Souring by Bacterial Sulfate Reduction (BSR) During HC Production
247(1)
5.3.7 Scavenging-An Overview of the Sulfur Mass Balance in the HC Reservoir During TSR or BSR
248(3)
5.3.8 Clay Swelling Due to Cation Exchange During Injection of Water
251(1)
5.3.9 Wellbore Cement Corrosion by Acid Attack from Formation Water/Brine
252(3)
5.4 Modeling Approaches and Numerical Simulators
255(11)
5.4.1 Gaps of the Simulators in the Oil and Gas Production Technology Community
255(1)
5.4.1.1 Scale Simulators
255(1)
5.4.1.2 Souring Simulators
255(1)
5.4.2 Clay Swelling Evaluation Approaches
256(1)
5.4.3 Reactive Transport Modeling Simulators Applicable to Petroleum Geochemical Systems
257(2)
5.4.4 Handling High Temperature
259(2)
5.4.5 Handling High Pressure
261(1)
5.4.6 Handling High Salinity
261(2)
5.4.7 Handling Highly Reducing Conditions
263(1)
5.4.8 Numerical Simulators Available for Modeling 4-High Reservoirs
264(2)
5.4.8.1 TOUGHREACT and TOUGHREACT-PITZER
264(1)
5.4.8.2 PHREEQC-based Simulators
265(1)
5.5 Applications of RTM in Evaluating Risks Related to Geochemical Processes in 4-High Reservoirs
266(45)
5.5.1 RTM Evaluation of Well and Reservoir Scaling and Clay Swelling During Waterflood
266(19)
5.5.1.1 Geological, Hydrogeological and Geochemical Setting
266(3)
5.5.1.2 RTM Setup using TOUGHREACT-PITZER and Model Calibration
269(3)
5.5.1.3 Model-Predicted Scaling Risk
272(1)
5.5.1.4 Model-Predicted Clay Swelling Risk
272(4)
5.5.1.5 Summary and Limitations
276(9)
5.5.2 Modeling Reservoir Scaling and Souring by TSR During Waterflood
285(14)
5.5.2.1 Geochemical Setting
286(1)
5.5.2.2 Formation Brine Composition
286(2)
5.5.2.3 Geochemical Reactions Induced by Waterflood
288(1)
5.5.2.4 Temperature-Dependent and Pressure-Dependent Thermodynamic Data
289(1)
5.5.2.5 Handling Solid Reduced Sulfur (Pyrite or Pyrrhotite) Under Reduced Conditions
289(2)
5.5.2.6 TOUGHREACT RTM Phase 1: Screening Phase (Risk Screening)
291(2)
5.5.2.7 TOUGHREACT Validation Model, Phase 2: Anhydrite Leachability Experiment to Validate the Kinetic Parameters of Anhydrite Dissolution
293(2)
5.5.2.8 TOUGHREACT Validation Model, Phase 2: Evaluation Uncertainties in the TSR Rate Constant, Anhydrite Leachability, and Iron-Chlorite Leachability
295(3)
5.5.2.9 TOUGHREACT RTM Phase 3: Prediction
298(1)
5.5.3 RTM Evaluation of Wellbore Cement Corrosion of a Legacy Well in CO2 and CO2/Acid Gas Storage
299(20)
5.5.3.1 Mineralogical Composition and Water Composition of the Wellbore Intervals
300(1)
5.5.3.2 Model Setup
300(2)
5.5.3.3 Modeled Wellbore Cement Corrosion Processes
302(7)
5.5.3.4 Sensitivity Studies
309(2)
5.6 Summary
311(1)
Acknowledgements
311(1)
References
312(7)
6 Multiphase Fluid Flow and Reaction in Heterogeneous Porous Media for Enhanced Heavy Oil Production 319(34)
Xinfeng Jia
Xiaohu Dong
Jinze Xu
Zhangxin Chen
6.1 Introduction
319(5)
6.1.1 Heavy Oil Reserve Distribution
319(1)
6.1.2 Current Exploitation Methods
319(2)
6.1.3 Potential in the Post-Steam Injection Era
321(2)
6.1.3.1 Hybrid Steam-Solvent Processes
321(1)
6.1.3.2 Steam-Solvent-Gas Co-injection Processes
322(1)
6.1.4 Transport Equations
323(1)
6.2 Thermal Recovery Processes
324(12)
6.2.1 Modeling Assumptions
324(1)
6.2.2 Heat Transfer in SAGD
325(6)
6.2.2.1 Gravity Drainage in a Transition Zone
327(1)
6.2.2.2 Boundary Movement
327(1)
6.2.2.3 Boundary Position
327(4)
6.2.3 Heat Transfer in CSS
331(3)
6.2.4 Conductive and Convective Heat Transfer
334(1)
6.2.5 Multiple Phase Flow
334(2)
6.3 Hybrid Thermal-Solvent Process
336(2)
6.3.1 Mass Transfer
336(1)
6.3.2 Coupled Heat and Mass Transfer
337(1)
6.3.3 SAGD vs. ES-SAGD
338(1)
6.4 Thermal-Solvent-Gas Co-injection Process
338(6)
6.4.1 PVT Behaviour
338(3)
6.4.2 MTFs Stimulation Process
341(1)
6.4.3 MTFs-Assisted Gravity Drainage Process
342(2)
6.4.4 Recovery Mechanisms
344(1)
6.5 Uncertainty Analysis for Reservoir Heterogeneity
344(4)
6.5.1 Bottom Water
344(2)
6.5.2 Shale Barrier
346(1)
6.5.3 Lean Zone
346(2)
6.6 Conclusions
348(1)
6.7 Recommendations
349(1)
6.7.1 Effects of Non-Condensable Gases on Heat and Mass Transfer
349(1)
6.7.2 Effects of Reservoir Heterogeneity on Heat and Mass Transfer
349(1)
Acknowledgements
349(1)
References
349(4)
7 Modeling the Potential Impacts of CO2 Sequestration on Shallow Groundwater: The Fate of Trace Metals and Organics and the Effect of Co-injected H2S 353(42)
Liange Zheng
Nicolas Spycher
7.1 Introduction
353(2)
7.2 The Fate of Trace Metals and Organics in a Shallow Aquifer in Response to a Hypothetical CO2 and Brine Leakage Scenario
355(18)
7.2.1 Simulator
356(1)
7.2.2 Model Setup
356(3)
7.2.3 Geochemical Model
359(2)
7.2.4 Metal Release from CO2 and/or Brine Leakage
361(12)
7.3 Impact of Co-injected H2S on the Quality of a Freshwater Aquifer
373(8)
7.3.1 The Simulator
377(1)
7.3.2 Model Setup
378(1)
7.3.3 Metal Mobilization under CO2+H2S Leakage
378(3)
7.4 Summary and Conclusion
381(3)
Appendix A
384(3)
Appendix B
387(1)
Acknowledgements
388(1)
References
388(7)
8 Modeling the Long-term Stability of Multi-barrier Systems for Nuclear Waste Disposal in Geological Clay Formations 395(58)
Francis Claret
Nicolas Marty
Christophe Tournassat
8.1 Introduction
395(15)
8.1.1 Geological Final Disposal of Radioactive Waste
395(1)
8.1.2 The 'Clay Concept'
396(1)
8.1.3 How a Repository System Evolves in Time and Space
396(1)
8.1.4 Modeling How a Repository System Evolves
397(13)
8.2 Modeling Physical and Chemical Processes on Repository Scales
410(13)
8.2.1 Reactive Transport Modeling Principles
410(4)
8.2.1.1 Reactive Transport Constitutive Equations
410(1)
8.2.1.2 Geometry and Space Discretization
410(1)
8.2.1.3 Where Everything Takes Place: the Pore Space
411(1)
8.2.1.4 Kinetic and Thermodynamic Databases
411(2)
8.2.1.5 Initial Conditions
413(1)
8.2.2 Repository Material Properties
414(9)
8.2.2.1 Generalities
414(1)
8.2.2.2 Clay Materials
414(6)
8.2.2.3 Cement Materials
420(2)
8.2.2.4 Iron (Metals)
422(1)
8.2.2.5 Glass
423(1)
8.3 Literature Review
423(6)
8.3.1 Clay/Concrete Interactions
424(2)
8.3.2 Iron/Clay Interactions
426(1)
8.3.3 Clay/Iron/Atmosphere (02) Interactions
427(1)
8.3.4 Glass Corrosion and its Interaction with Clay
428(1)
8.4 Recent Improvements and Future Challenges in the RTM Approach to Repository Systems
429(7)
8.4.1 Necessary Simplifications in the RTM Approach
429(1)
8.4.2 Modeling Diffusion in Porous Systems with Consideration of Electrostatic Effects
429(1)
8.4.3 Diffusion in Non-saturated Conditions
430(1)
8.4.4 Two-Phase Flow Models
431(1)
8.4.5 Water Consumption and Non-saturated Conditions
432(1)
8.4.6 Reducing Porosity and Coupling with Transport Parameters
432(1)
8.4.7 Accounting for Material Heterogeneities
433(1)
8.4.8 Kinetics versus Local Equilibrium Calculations
433(1)
8.4.9 Modeling Glass Alteration in Clay-rock Environments
434(1)
8.4.10 Coupling Mechanics and Chemistry
435(1)
Acknowledgements
436(1)
References
436(17)
9 Modeling Variably Saturated Water Flow and Multicomponent Reactive Transport in Constructed Wetlands 453(32)
Gunter Langergraber
Jirka Simunek
9.1 Introduction
453(2)
9.2 The HYDRUS Wetland Module
455(1)
9.3 The CW2D and CWM1 Biokinetic Models
456(10)
9.3.1 CW2D Biokinetic Model
459(4)
9.3.1.1 Stoichiometric Matrix and Reaction Rates
459(1)
9.3.1.2 Model Parameters
459(4)
9.3.2 CWM1 Biokinetic Model
463(11)
9.3.2.1 Stoichiometric Matrix and Reaction Rates
463(3)
9.3.2.2 Model Parameters
466(1)
9.4 Simulation Results for Vertical Flow Constructed Wetlands Treating Domestic Wastewater
466(8)
9.5 Experiences and Challenges using Wetland Models
474(6)
9.5.1 Description of Water Flow
474(1)
9.5.2 Values of the Biokinetic Model Parameters and Influent Fractionation
475(2)
9.5.3 Clogging Model
477(2)
9.5.4 Models as CW Design Tools
479(1)
9.6 Summary and Conclusions
480(1)
References
481(4)
10 Reactive Transport Modeling and Biogeochemical Cycling 485(26)
Christof Meile
Timothy D. Scheibe
10.1 Introduction
485(1)
10.2 Reactive Transport Model Formulations
486(2)
10.3 The Representation of Microbes
488(7)
10.3.1 Implicit Presence of Microbes
488(1)
10.3.2 Explicit Representations
489(6)
10.3.2.1 Functional Populations
490(2)
10.3.2.2 Trait-based Models
492(1)
10.3.2.3 Bottom-up Approaches
492(1)
10.3.2.4 Metabolic Activity as Ecosystem Response
493(1)
10.3.2.5 Emerging Patterns
494(1)
10.4 Data Integration
495(2)
10.5 Linking Models Across Scales
497(4)
10.6 Summary and Outlook
501(1)
Acknowledgements
502(1)
References
502(9)
11 Effective Stochastic Model For Reactive Transport 511(22)
Alexandre M. Tartakovsky
11.1 Introduction
511(4)
11.2 Pore and Darcy Models for Transport with Bimolecular Reactions
515(5)
11.3 Langevin Advection-Diffusion-Reaction Model
520(1)
11.4 Parameterization of the Stochastic Model
521(2)
11.5 The Langevin Model for Multicomponent Reactive Transport
523(5)
11.6 Rayleigh-Taylor Instability
528(1)
11.7 Summary and Conclusions
529(1)
Acknowledgement
530(1)
References
530(3)
Index 533
Editors:

Yitian Xiao, PhD is Senior Geoscience Advisor, ExxonMobil Upstream Research Company, USA.

Fiona Whitaker, PhD is Professor of Earth Sciences, University of Bristol, UK.

Tianfu Xu, PhD is Director of Key Laboratory of Groundwater Resources and Environment, Jilin University, China.

Consulting Editor:

Carl Steefel, PhD is Senior Scientist and Geochemistry Department Head, Earth Science Division, Lawrence Berkeley National Laboratory, USA.