Atjaunināt sīkdatņu piekrišanu

Real Fatou Conjecture [Mīkstie vāki]

  • Formāts: Paperback / softback, 148 pages, height x width: 254x197 mm, weight: 227 g, 8 illus.
  • Sērija : Annals of Mathematics Studies
  • Izdošanas datums: 25-Oct-1998
  • Izdevniecība: Princeton University Press
  • ISBN-10: 0691002584
  • ISBN-13: 9780691002583
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 87,23 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 148 pages, height x width: 254x197 mm, weight: 227 g, 8 illus.
  • Sērija : Annals of Mathematics Studies
  • Izdošanas datums: 25-Oct-1998
  • Izdevniecība: Princeton University Press
  • ISBN-10: 0691002584
  • ISBN-13: 9780691002583
Citas grāmatas par šo tēmu:

In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics.

In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students.

1Review of Concepts31.1Theory of Quadratic Polynomials31.2Dense
Hyperbolicity61.3Steps of the Proof of Dense Hyperbolicity122Quasiconformal
Gluing252.1Extendibility and Distortion262.2Saturated Maps302.3Gluing of
Saturated Maps353Polynomial-Like Property453.1Domains in the Complex
Plane453.2Cutting Times474Linear Growth of Moduli674.1Box Maps and Separation
Symbols674.2Conformal Roughness874.3Growth of the Separation
Index1005Quasiconformal Techniques1095.1Initial Inducing1095.2Quasiconformal
Pull-back1205.3Gluing Quasiconformal Maps1295.4Regularity of Saturated
Maps1335.5Straightening Theorem139Bibliography143Index147
Jacek Graczyk is Assistant Professor of Mathematics at Michigan State University. Grzegorz Swiatek is Associate Professor of Mathematics at Pennsylvania State University.