Atjaunināt sīkdatņu piekrišanu

E-grāmata: Real Options Illustrated

  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Finance
  • Izdošanas datums: 23-Mar-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319283104
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Finance
  • Izdošanas datums: 23-Mar-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319283104

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book explains the standard Real Options Analysis (ROA) literature in a straightforward, step by step manner without the use of complex mathematics. A lot of ROA literature is described through partial differential equations, probability density functions and simulation techniques, all of which may be unconvincing in the applicable qualities ROA possesses. Using this book, the reader will have a better grasp about how ROA works and will be able to provide his or her judgment about ROA, since all the basics, as well as its positive and negative qualities, are discussed.

Real Options Illustrated provides practitioners with a real options framework and encourages readers to study the methodology using the in-depth explanations. This introduction to ROA is sufficient to equip readers with ROA basics, enabling them to perform future independent research. From this book, readers can judge whether ROA is of any value to their field.

Recenzijas

Real options analysis is an important tool in the process of evaluation of investment projects with a long time horizon, which are subject to internal and external uncertainties. The book is interesting from a practical point of view. it provides an explanation of the techniques of real option analysis, which could be useful for readers who would like to apply these techniques in practice. (Piotr Nowak, Mathematical Reviews, March, 2017) 

1 Introduction to Real Options Analysis
1(16)
1.1 Options
1(6)
1.1.1 Basics of Option Theory
2(2)
1.1.2 From Financial Options to Real Options
4(1)
1.1.3 Common Real Options
5(2)
1.2 A Simple Real Options Analysis Example
7(2)
1.3 Key Strengths of Real Options Analysis
9(1)
1.4 Weaknesses of Real Options Analysis
10(1)
1.5 Three Approaches
11(6)
1.5.1 Analytical Versus Numerical
11(1)
1.5.2 Dynamic Programming
12(1)
1.5.3 Contingent Claims
12(1)
1.5.4 Comparing Dynamic Programming and Contingent Claims
13(1)
1.5.5 Monte Carlo Simulation
14(1)
References
15(2)
2 Comparison of Real Options Analysis and Other Methods
17(10)
2.1 The Case
17(1)
2.2 Net Present Value Analysis
18(1)
2.3 Decision Tree Analysis
19(2)
2.4 Real Options Analysis
21(3)
2.4.1 Replicating Portfolio Approach
21(1)
2.4.2 Risk-Neutral Probability Approach
22(2)
2.5 Evaluation
24(3)
References
25(2)
3 Real Options Methods Illustrated
27(60)
3.1 Netscape: Black-Scholes
27(8)
3.1.1 The Valuation Formula
28(6)
3.1.2 The Main Objective
34(1)
3.1.3 The Case: Netscape
34(1)
3.1.4 Strengths and Weaknesses
34(1)
3.2 Option Pricing: Cox, Ross and Rubinstein
35(13)
3.2.1 The Basic Idea
35(2)
3.2.2 The Binomial Option Pricing Formula
37(6)
3.2.3 The Main Objectives
43(1)
3.2.4 Strengths and Weaknesses
43(1)
3.2.5 The Binomial Tree Method Illustrated
43(5)
3.3 The Portes Case: Copeland and Antikarov
48(14)
3.3.1 The Case
48(1)
3.3.2 The Main Objectives
48(1)
3.3.3 The Method
49(11)
3.3.4 Strengths and Weaknesses
60(2)
3.4 The Boeing Approach: Datar Mathews
62(4)
3.4.1 The Case
62(1)
3.4.2 The Main Objectives
63(1)
3.4.3 The Method
63(2)
3.4.4 Strenghts and Weaknesses
65(1)
3.5 Parking Garage: de Neufville, Scholtes and Wang
66(17)
3.5.1 The Case
67(1)
3.5.2 The Main Objectives
67(1)
3.5.3 The Demand Model
68(5)
3.5.4 The Method
73(4)
3.5.5 Strenghts and Weaknesses
77(2)
3.5.6 The Generalized Demand Model
79(4)
3.6 Summary Real Options Methods
83(4)
References
84(3)
4 The Impact of Probability Distributions
87(10)
4.1 Uniform Distribution, Beta Distribution and PERT-Distribution
88(3)
4.1.1 The Uniform Distribution
88(1)
4.1.2 The Beta Distribution
88(3)
4.1.3 The PERT-Distribution
91(1)
4.2 Design Comparative Study Probability Distributions
91(2)
4.3 Results Simulation Studies
93(3)
4.3.1 Simulation Results of Different Parameter Values of the Beta Distribution
94(1)
4.3.2 Results Comparative Study of Three Probability Distributions
95(1)
4.4 Conclusion
96(1)
References
96(1)
Glossary 97(8)
Index 105
Linda Peters, PhD Candidate on the field of Applied Economics at the University of Antwerp; Project Manager and Statistician Social Security at a government agency and Expert Social Protection for international projects. As a PhD candidate she is involved in the application of Real Option theory to Global Public Policy and her research contributes to bridge the gap between theory and practice. Her research interests include: Real Options, Global Public Policy, Social Protection, Models of Decision-Making, Probability Distributions.