Atjaunināt sīkdatņu piekrišanu

E-grāmata: Real time deforestation detection using ANN and Satellite images: The Amazon Rainforest study case

  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Computer Science
  • Izdošanas datums: 25-Apr-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319157412
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Computer Science
  • Izdošanas datums: 25-Apr-2015
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319157412

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network training to enable us to select the best neural architecture to address the problem. The tool makes use of confusion matrices to determine the degree of success of the network. A spectrum-temporal analysis of the study area was done on 57 images from May 20 to July 15, 2003 using the trained neural network. The analysis enabled verification of quality of the implemented neural network classification and also aided in understanding the dynamics of deforestation in the Amazon rainforest, thereby highlighting the vast potential of neural networks for image classification. However, the complex task of detection of predatory actions at the beginning, i.e., generation of consistent alarms, instead of false alarms has not been solved yet. Thus, the present article provides a theoretical basis and elaboration of practical use of neural networks and satellite images to combat illegal deforestation.
1 Introduction
1(4)
1.1 Objectives
3(1)
1.1.1 General
3(1)
1.1.2 Specific
4(1)
1.2 Contributions
4(1)
1.3 Text Organization
4(1)
2 Literature Review
5(14)
2.1 Remote Sensing
5(4)
2.1.1 Sensor MODIS/TERRA
8(1)
2.2 Artificial Neural Network
9(6)
2.2.1 Multilayer Perceptron
12(1)
2.2.2 Back-Propagation
13(2)
2.3 Related Work
15(4)
2.3.1 Monitoring Systems
15(1)
2.3.2 Orbital Images and Neural Networks
16(3)
3 Method
19(14)
3.1 Material Used
19(1)
3.2 Development Tool
19(14)
3.2.1 Neural Module
22(4)
3.2.2 Data Storage
26(2)
3.2.3 Alarm Generation
28(5)
4 Modeling and Tool Use
33(6)
4.1 Modeling and Tool Use
33(6)
5 Results and Discussion
39(12)
5.1 Qualitative and Quantitative Analysis
39(5)
5.2 Temporal Analysis
44(4)
5.3 Conclusions and Future Work
48(3)
Appendix A Training Dataset 51(6)
Appendix B Test Dataset 57(4)
References 61(4)
Index 65