Preface |
|
xv | |
List of Contributors |
|
xvii | |
List of Figures |
|
xix | |
List of Tables |
|
xxix | |
List of Abbreviations |
|
xxxi | |
1 Introduction |
|
1 | (22) |
|
|
|
1.1 A Real-Time Reconfigurable Multi-Chip Architecture for Large-Scale Biophysically Accurate Neuron Simulation |
|
|
1 | (3) |
|
1.2 The Inferior Olivary Nucleus Cell |
|
|
4 | (6) |
|
1.2.1 Abstract Model Description |
|
|
4 | (2) |
|
1.2.2 The ION Cell Design Configuration |
|
|
6 | (3) |
|
1.2.3 The ION Cell Cluster Controller |
|
|
9 | (1) |
|
1.3 Multi-Chip Dataflow Architecture |
|
|
10 | (7) |
|
1.4 Organization of the Book |
|
|
17 | (2) |
|
|
19 | (4) |
2 Multi-Chip Dataflow Architecture for Massive Scale Biophysically Accurate Neuron Simulation |
|
23 | (26) |
|
|
|
24 | (1) |
|
2.2 System Design Configuration |
|
|
25 | (11) |
|
|
25 | (1) |
|
2.2.2 Zero Communication Time: The Optimal Approach |
|
|
26 | (1) |
|
2.2.3 Localising Communication: How to Speed Up the Common Case |
|
|
26 | (1) |
|
|
27 | (1) |
|
2.2.5 Localise Communication between Clusters |
|
|
28 | (3) |
|
2.2.6 Synchronisation between the Clusters |
|
|
31 | (1) |
|
2.2.7 Adjustments to the Network to Scale over Multiple FPGAs |
|
|
32 | (1) |
|
2.2.8 Interfacing the Outside World: Inputs and Outputs |
|
|
33 | (1) |
|
2.2.9 Adding Flexibility: Run-Time Configuration |
|
|
34 | (1) |
|
2.2.10 Parameters of the System |
|
|
35 | (1) |
|
2.2.11 Connectivity and Structure Generation |
|
|
35 | (1) |
|
2.3 System Implementation |
|
|
36 | (5) |
|
2.3.1 Exploiting Locality: Clusters |
|
|
36 | (2) |
|
2.3.2 Connecting Clusters: Routers |
|
|
38 | (1) |
|
2.3.3 Tracking Time: Iteration Controller |
|
|
39 | (1) |
|
|
39 | (1) |
|
2.3.5 The Control Bus for Run-Time Configuration |
|
|
40 | (1) |
|
2.3.6 Automatic Structure Generation and Connectivity Generation |
|
|
41 | (1) |
|
|
41 | (5) |
|
|
46 | (1) |
|
|
46 | (3) |
3 A Real-Time Hybrid Neuron Network for Highly Parallel Cognitive Systems |
|
49 | (32) |
|
|
|
49 | (2) |
|
3.2 The Calculation Architecture |
|
|
51 | (12) |
|
3.2.1 The Physical Cell Overview |
|
|
52 | (1) |
|
3.2.2 Initialising the Physical Cells |
|
|
53 | (1) |
|
3.2.3 Axon Hillock + Soma Hardware |
|
|
53 | (4) |
|
3.2.3.1 Exponent operand schedule |
|
|
54 | (1) |
|
3.2.3.2 Axon hillock and soma compartment controller |
|
|
55 | (2) |
|
|
57 | (4) |
|
3.2.4.1 Dendrite network operation |
|
|
58 | (1) |
|
3.2.4.2 Dendrite combine operation |
|
|
59 | (1) |
|
3.2.4.3 Dendrite compartmental latency |
|
|
60 | (1) |
|
3.2.5 Calculation Architecture Latency |
|
|
61 | (1) |
|
3.2.6 Exponent Architecture |
|
|
62 | (1) |
|
3.3 The Calculation Architecture |
|
|
63 | (5) |
|
3.3.1 Communication Architecture Overview |
|
|
63 | (1) |
|
|
64 | (2) |
|
|
66 | (2) |
|
|
66 | (1) |
|
3.3.3.2 Design specification |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (9) |
|
|
68 | (3) |
|
3.4.1.1 Building a test set |
|
|
68 | (1) |
|
3.4.1.2 Design simulation |
|
|
69 | (1) |
|
3.4.1.3 SystemC synthesis |
|
|
70 | (1) |
|
3.4.1.4 Post-synthesis simulation |
|
|
70 | (1) |
|
3.4.1.5 VHDL implementation |
|
|
70 | (1) |
|
|
71 | (2) |
|
|
71 | (1) |
|
|
71 | (1) |
|
|
72 | (1) |
|
3.4.3 Model Configuration |
|
|
73 | (4) |
|
|
77 | (1) |
|
|
77 | (4) |
4 Digital Neuron Cells for Highly Parallel Cognitive Systems |
|
81 | (30) |
|
|
|
81 | (2) |
|
4.2 System Design Configuration |
|
|
83 | (6) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
4.2.4 Scalability of Network |
|
|
85 | (1) |
|
4.2.5 Neuron Models Implementations |
|
|
86 | (2) |
|
|
88 | (1) |
|
4.3 System Design Implementation |
|
|
89 | (11) |
|
|
89 | (2) |
|
4.3.1.1 Inputs and outputs |
|
|
89 | (1) |
|
|
90 | (1) |
|
4.3.1.2.1 Localization of inputs |
|
|
90 | (1) |
|
4.3.1.2.2 Localization of outputs |
|
|
90 | (1) |
|
4.3.2 Implementation of the Neuron Models |
|
|
91 | (6) |
|
4.3.2.1 The extended Hodgkin-Huxley model |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
92 | (1) |
|
4.3.2.2 Integrate-and-fire model |
|
|
92 | (2) |
|
|
94 | (1) |
|
4.3.2.3.1 Axonal conduction delay |
|
|
94 | (1) |
|
|
96 | (1) |
|
4.3.2.3.3 Spike generation |
|
|
97 | (1) |
|
4.3.3 High-level Synthesis |
|
|
97 | (3) |
|
4.3.3.1 Optimization with directives |
|
|
97 | (1) |
|
4.3.3.2 Adjustments of system for HLS |
|
|
98 | (1) |
|
4.3.3.2.1 Hodgkin-Huxley model |
|
|
98 | (1) |
|
4.3.3.2.2 Integrate-and-fire model |
|
|
99 | (1) |
|
4.3.3.2.3 Izhikevich model |
|
|
99 | (1) |
|
4.4 Performance Evaluation |
|
|
100 | (5) |
|
4.4.1 Model Configuration |
|
|
100 | (1) |
|
4.4.2 Experimental Results |
|
|
101 | (4) |
|
|
105 | (1) |
|
|
106 | (5) |
5 Energy-Efficient Multipath Ring Network for Heterogeneous Clustered Neuronal Arrays |
|
111 | (32) |
|
|
|
111 | (1) |
|
5.2 State-of-the-Art and Background Concepts |
|
|
112 | (7) |
|
|
112 | (2) |
|
5.2.2 Simulation Platforms |
|
|
114 | (2) |
|
5.2.3 Communication Network Considerations |
|
|
116 | (3) |
|
5.3 Neural Network Communication Schemes and System Structure |
|
|
119 | (12) |
|
5.3.1 Physical System Structure |
|
|
119 | (4) |
|
5.3.2 Extraction, Insertion, and Configuration Layer |
|
|
123 | (1) |
|
|
124 | (7) |
|
5.3.3.1 Multipath ring routing scheme |
|
|
126 | (2) |
|
|
128 | (3) |
|
|
131 | (7) |
|
5.4.1 Mathematical Derivation |
|
|
132 | (3) |
|
5.4.2 Energy-Delay Product Estimation |
|
|
135 | (3) |
|
|
138 | (1) |
|
|
138 | (5) |
6 A Hierarchical Dataflow Architecture for Large-Scale Multi-FPGA Biophysically Accurate Neuron Simulation |
|
143 | (20) |
|
|
|
143 | (1) |
|
|
144 | (5) |
|
|
144 | (2) |
|
|
146 | (2) |
|
|
148 | (1) |
|
6.2.4 Hodgkin-Huxley Cells |
|
|
148 | (1) |
|
6.3 The Communication Architecture |
|
|
149 | (6) |
|
|
155 | (5) |
|
|
160 | (1) |
|
|
160 | (3) |
7 Single-Lead Neuromorphic ECG Classification System |
|
163 | (26) |
|
|
|
163 | (8) |
|
7.1.1 ECG Signals and Arrhythmia |
|
|
164 | (2) |
|
|
166 | (2) |
|
7.1.2.1 Methods and algorithms |
|
|
166 | (1) |
|
|
166 | (1) |
|
7.1.2.1.2 P and T wave detection |
|
|
167 | (1) |
|
|
168 | (3) |
|
7.1.3.1 Feature selection choices |
|
|
170 | (1) |
|
7.1.3.2 Methods and algorithms |
|
|
170 | (1) |
|
7.1.4 Classification Methods |
|
|
171 | (1) |
|
7.2 Feature Extraction Implementation |
|
|
171 | (9) |
|
|
171 | (6) |
|
|
171 | (2) |
|
7.2.1.2 P and T wave detection |
|
|
173 | (4) |
|
|
177 | (3) |
|
|
177 | (1) |
|
7.2.2.2 Correlation matrix |
|
|
178 | (2) |
|
7.3 Network Configuration and Results |
|
|
180 | (5) |
|
|
180 | (1) |
|
7.3.2 Silhouette Coefficients |
|
|
181 | (1) |
|
7.3.3 Clustering Methods for the Output |
|
|
182 | (1) |
|
|
183 | (2) |
|
|
185 | (1) |
|
|
185 | (4) |
8 Multi-Compartment Synaptic Circuit in Neuromorphic Structures |
|
189 | (34) |
|
|
|
189 | (4) |
|
|
189 | (4) |
|
8.1.1.1 Synaptic plasticity |
|
|
190 | (1) |
|
8.1.1.2 Synaptic receptors |
|
|
191 | (1) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
192 | (1) |
|
|
193 | (4) |
|
8.2.1 Model of the Synapse |
|
|
193 | (1) |
|
|
194 | (3) |
|
|
194 | (1) |
|
8.2.2.1.1 Triplet-based STDP |
|
|
196 | (1) |
|
8.3 Component Implementations |
|
|
197 | (6) |
|
8.3.1 Learning Rule 1: Classic STDP |
|
|
197 | (1) |
|
8.3.2 Learning Rule 2: Advanced STDP |
|
|
198 | (2) |
|
8.3.3 Learning Rule 3: Triplet-Based STDP |
|
|
200 | (1) |
|
|
201 | (2) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
203 | (1) |
|
8.4 Component Characterizations |
|
|
203 | (10) |
|
8.4.1 Learning Rule 1: Classic STDP |
|
|
203 | (1) |
|
8.4.2 Learning Rule 2: Advanced STDP |
|
|
204 | (2) |
|
8.4.3 Learning Rule 3: Triplet-based STDP |
|
|
206 | (1) |
|
|
207 | (6) |
|
8.4.4.1 Environment settings |
|
|
209 | (2) |
|
|
211 | (2) |
|
8.5 Neural Network with Multi-Receptor Synapses |
|
|
213 | (6) |
|
8.5.1 Synchrony Detection Tool: Cross-Correlograms |
|
|
213 | (1) |
|
8.5.2 Environment Settings |
|
|
214 | (2) |
|
|
216 | (1) |
|
8.5.4 Synchrony Detection |
|
|
217 | (2) |
|
|
219 | (1) |
|
|
220 | (3) |
9 Conclusion and Future Work |
|
223 | (6) |
|
|
|
9.1 Summary of the Results |
|
|
223 | (4) |
|
9.2 Recommendations and Future Work |
|
|
227 | (2) |
Index |
|
229 | (2) |
About the Editors |
|
231 | |