Atjaunināt sīkdatņu piekrišanu

Recent Advances in Logo Detection Using Machine Learning Paradigms: Theory and Practice 2024 ed. [Hardback]

  • Formāts: Hardback, 119 pages, height x width: 235x155 mm, 63 Illustrations, color; 1 Illustrations, black and white; XII, 119 p. 64 illus., 63 illus. in color., 1 Hardback
  • Sērija : Intelligent Systems Reference Library 255
  • Izdošanas datums: 31-May-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031598105
  • ISBN-13: 9783031598104
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 145,08 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 170,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 119 pages, height x width: 235x155 mm, 63 Illustrations, color; 1 Illustrations, black and white; XII, 119 p. 64 illus., 63 illus. in color., 1 Hardback
  • Sērija : Intelligent Systems Reference Library 255
  • Izdošanas datums: 31-May-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031598105
  • ISBN-13: 9783031598104
Citas grāmatas par šo tēmu:
This book presents the current trends in deep learning-based object detection framework with a focus on logo detection tasks. It introduces a variety of approaches, including attention mechanisms and domain adaptation for logo detection, and describes recent advancement in object detection frameworks using deep learning. We offer solutions to the major problems such as the lack of training data and the domain-shift issues.





This book provides numerous ways that deep learners can use for logo recognition, including:









Deep learning-based end-to-end trainable architecture for logo detection Weakly supervised logo recognition approach using attention mechanisms Anchor-free logo detection framework combining attention mechanisms to precisely locate logos in the real-world images Unsupervised logo detection that takes into account domain-shift issues from synthetic to real-world images Approach for logo detection modeling domain adaption task in the context of weakly supervised learning to overcome the lack of object-level annotation problem.





The merit of our logo recognition technique is demonstrated using experiments, performance evaluation, and feature distribution analysis utilizing different deep learning frameworks.





The book is directed to professors, researchers, practitioners in the field of engineering, computer science, and related fields as well as anyone interested in using deep learning techniques and applications in logo and various object detection tasks.





 





 





 

Deep Convolutional Neural networks.- Introduction to Logo Detection.- Weakly Supervised Logo Detection Approach.