Atjaunināt sīkdatņu piekrišanu

Recent Advances in Machine Learning Techniques and Sensor Applications for Human Emotion, Activity Recognition and Support 2024 ed. [Hardback]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Hardback, 278 pages, height x width: 235x155 mm, 87 Illustrations, color; 5 Illustrations, black and white; XV, 278 p. 92 illus., 87 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1175
  • Izdošanas datums: 08-Nov-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031718208
  • ISBN-13: 9783031718205
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 162,93 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 191,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 278 pages, height x width: 235x155 mm, 87 Illustrations, color; 5 Illustrations, black and white; XV, 278 p. 92 illus., 87 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1175
  • Izdošanas datums: 08-Nov-2024
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031718208
  • ISBN-13: 9783031718205
Citas grāmatas par šo tēmu:

This book explores integrating machine learning techniques and sensor applications for human emotion and activity recognition, creating personalized and effective support systems. It covers state-of-the-art machine learning techniques and large language models using multimodal sensors. Enhancing the quality of life for individuals with special needs, particularly the elderly, is a key focus in Active and Assisted Living (AAL) research. Unlike other literature, it emphasizes support mechanisms along with recognition, using metamodel integration for adaptable AAL systems. This book offers insights into technologies transforming AAL for researchers, students, and practitioners. It is a valuable resource for developing responsive and personalized support systems that enhance life quality in smart environments. It is also essential for advancing the understanding of machine learning and sensor technologies in AAL and emotion recognition. 

Decoding Human Essence Novel Machine Learning Techniques and Sensor Applications in Emotion Perception and Activity Detection.- Leveraging Context-Aware Emotion and Fatigue Recognition through Large Language Models for Enhanced Advanced Driver Assistance Systems ADAS.- ECG based Human Emotion Recognition Using Generative Models.- An evolutionary convolutional neural network architecture for recognizing emotions from EEG signals.- Analyzing the Potential Contribution of a Meta Learning Approach to Robust and Effective Subject Independent Emotion related Time Series Analysis of Bio signals.- A Multibranch LSTM CNN Model for Human Activity Recognition.- Importance of Activity and Emotion Detection in the field of Ambient Assisted Living.- Real Time Human Activity Recognition for the Elderly VR Training with Body Area Networks.- An Interactive Metamodel Integration Approach IMIA for Active and Assisted Living Systems.