Atjaunināt sīkdatņu piekrišanu

Recent Advances in Time-Series ClassificationMethodology and Applications 2025 ed. [Hardback]

  • Formāts: Hardback, 327 pages, height x width: 235x155 mm, 243 Illustrations, color; 26 Illustrations, black and white; XIV, 327 p. 269 illus., 243 illus. in color., 1 Hardback
  • Sērija : Intelligent Systems Reference Library 264
  • Izdošanas datums: 27-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031775260
  • ISBN-13: 9783031775260
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 145,08 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 170,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 327 pages, height x width: 235x155 mm, 243 Illustrations, color; 26 Illustrations, black and white; XIV, 327 p. 269 illus., 243 illus. in color., 1 Hardback
  • Sērija : Intelligent Systems Reference Library 264
  • Izdošanas datums: 27-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031775260
  • ISBN-13: 9783031775260
Citas grāmatas par šo tēmu:
This book examines the impact of such constraints on elastic time-series similarity measures and provides guidance on selecting suitable measures. Time-series classification frequently relies on selecting an appropriate similarity or distance measure to compare time series effectively, often using dynamic programming techniques for more robust results. However, these techniques can be computationally demanding, which results in the usage of global constraints to reduce the search area in the dynamic programming matrix. While these constraints cut computation time significantly (by up to three orders of magnitude), they may also affect classification accuracy.





Additionally, the importance of the nearest neighbor classifier (1NN) is emphasized for its strong performance in time-series classification, alongside the kNN classifier which offers stable results. This book further explores the weighted kNN classifier, which gives closer neighbors more influence, showing how it merges accuracy and stability for improved classification outcomes.





 

Introduction.- Time Series and Similarity Measures.- Time Series Classification.- The impact of global constraints on the accuracy of elastic similarity measures.