Atjaunināt sīkdatņu piekrišanu

Recent Metaheuristics Algorithms for Parameter Identification 2020 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 297 pages, height x width: 235x155 mm, weight: 480 g, XIV, 297 p., 1 Paperback / softback
  • Sērija : Studies in Computational Intelligence 854
  • Izdošanas datums: 20-Sep-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030289192
  • ISBN-13: 9783030289195
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 297 pages, height x width: 235x155 mm, weight: 480 g, XIV, 297 p., 1 Paperback / softback
  • Sērija : Studies in Computational Intelligence 854
  • Izdošanas datums: 20-Sep-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030289192
  • ISBN-13: 9783030289195
Citas grāmatas par šo tēmu:
This book presents new, alternative metaheuristic developments that have proved to be effective in various complex problems to help researchers, lecturers, engineers, and practitioners solve their own optimization problems. It also bridges the gap between recent metaheuristic techniques and interesting identification system methods that benefit from the convenience of metaheuristic schemes by explaining basic ideas of the proposed applications in ways that can be understood by readers new to these fields. As such it is a valuable resource for energy practitioners who are not researchers in metaheuristics. In addition, it offers members of the metaheuristic community insights into how system identification and energy problems can be translated into optimization tasks.
Introduction to optimization and metaheuristic methods.- Optimization techniques in parameters setting for Induction Motor.- An enhanced crow search algorithm applied to energy approaches.- Comparison of solar cells parameters estimation using several optimization algorithms.- Gravitational search algorithm for non-linear system identification using ANFIS-Hammerstein approach.- Fuzzy Logic Based Optimization Algorithm.- Neighborhood Based Optimization Algorithm.- Knowledge-Based Optimization Algorithm.