Atjaunināt sīkdatņu piekrišanu

E-grāmata: Recharge of Phreatic Aquifers in (Semi-)Arid Areas: IAH International Contributions to Hydrogeology 19

Edited by (Vrije University Amsterdam, the Netherlands)
  • Formāts - PDF+DRM
  • Cena: 262,98 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Groundwater use is of fundamental importance to meet the rapidly expanding urban, industrial and agricultural water requirements in (semi) arid areas. Quantifying the current rate of groundwater recharge and define its variability in space and time are thus prerequesites for efficient groundwater resource managment in these regions, where such resources are often the key to economic development. Attention focuses on recharge of phreatic aquifers, often the most readily-available and affordable source of water in (semi) arid regions. These aquifers are also the most susceptible to contamination, with the recharge rate determining their level of vulnerability. (Semi) arid zone recharge can be highly variable, the greater the aridity, the smaller and potentially more variable the natural flux. Its determination is an iterative process, involving progressive data collection and resource evaluation; there is also a need to use more than one technique to verify results. Direct, localised and indirect recharge mechanisms from a spectrum of known sources are addressed in the framework of recharge from precipitation, intermittant flow and permanent water bodies. The approach taken for each of these reflects the nature and current understanding of the processes involved. The volume also reviews current recharge estimation challenges, outlines recent developments and offers guidance for potential solutions.
Foreword ix
1 Groundwater Recharge Principles, Problems and Developments
1(18)
Ian Simmers
1.1 Introduction
1(1)
1.2 Historical framework
1(3)
1.2.1 Recharge processes
2(2)
1.2.2 Recharge estimation
4(1)
1.3 Challenges in estimating recharge
4(8)
1.3.1 Recharge from precipitation
4(5)
1.3.2 Recharge from intermittent flow
9(1)
1.3.3 Recharge from permanent water bodies
10(2)
1.4 Developments in estimating recharge from precipitation
12(3)
1.5 Concluding remarks
15(4)
References
16(3)
2 Recharge From Precipitation
19(126)
Jan Hendrickx
Glen Walker
2.1 Introduction
19(2)
2.2 Controls on water movement through the vadose zone
21(22)
2.2.1 Localized recharge
21(7)
2.2.2 Preferential pathway flow
28(8)
2.2.3 Lateral flow
36(3)
2.2.4 Effect of vegetation cover
39(4)
2.3 Physics of water flow in the vadose zone
43(12)
2.3.1 Water flow in porous soils
43(3)
2.3.2 Indirect methods for determining hydraulic properties
46(4)
2.3.3 Flow through stony soils
50(1)
2.3.4 Flow through fractures
51(2)
2.3.5 Vapour flow through dry soil
53(2)
2.4 Solute and isotope movement in the vadose zone
55(4)
2.5 Physical methods for recharge estimation
59(16)
2.5.1 Empirical rainfall-recharge expressions
59(1)
2.5.2 Water balance methods for determining potential recharge
60(2)
2.5.3 Models for determining actual recharge
62(9)
2.5.4 Field determination of recharge fluxes
71(2)
2.5.5 Lysimetry
73(2)
2.6 Tracer methods for recharge estimation
75(19)
2.6.1 Environmental tracers
77(9)
2.6.2 Artificial tracers
86(4)
2.6.3 Bomb tracers
90(1)
2.6.4 Accuracy of tracer methods
91(3)
2.7 A Framework for Estimating Precipitation Recharge
94(21)
List of symbols
96(2)
References
98(17)
Case Studies
Recharge from irrigated lands
115(14)
J. Beekma
T.J. Kelleners
M.R. Chaudhry
Th. M. Boers
J.C. Van Dam
Modelling of groundwater recharge for a fractured dolomite aquifer under semi-arid conditions
129(16)
J. Van der Lee
J.C. Gehrels
3 Recharge From Intermittent Flow
145(70)
Gideon Kruseman
3.1 Introduction
145(1)
3.2 Hydrology of intermittent streams
145(7)
3.2.1 Intermittent streams
145(1)
3.2.2 Rainfall
146(1)
3.2.3 Runoff
146(2)
3.2.4 Assessment of surface water resources
148(1)
3.2.5 Erosion
148(1)
3.2.6 Aquifers
149(3)
3.2.7 Groundwater quality
152(1)
3.3 Groundwater recharge processes
152(8)
3.3.1 The recharge phenomenon
152(1)
3.3.2 The infiltration process
153(1)
3.3.3 Flow through the unsaturated zone
154(2)
3.3.4 Recharge of bedrock aquifers
156(1)
3.3.5 Recharge by intermittent streams
157(1)
3.3.6 Recharge of alluvial fans
157(1)
3.3.7 Recharge in valleys and intermontane plains
158(2)
3.4 Estimating recharge
160(14)
3.4.1 General approach
160(1)
3.4.2 Direct measurement
161(1)
3.4.3 Indirect measurements
161(1)
3.4.4 Water budget methods
162(2)
3.4.5 Darcian approaches
164(4)
3.4.6 Tracer techniques
168(4)
3.4.7 Empirical formulae
172(2)
3.4.8 Numerical groundwater flow simulation
174(1)
3.4.9 Rough estimates
174(1)
3.5 Man enhanced recharge
174(5)
3.5.1 Scope
174(1)
3.5.2 Recharge from irrigation
175(1)
3.5.3 Village tanks
175(1)
3.5.4 Artificial recharge
175(4)
3.6 Quantitative field data
179(36)
References
182(5)
Case Studies
Estimation of wadi recharge from channel losses in Tabalah Basin, Saudi Arabia
187(14)
A. U. Sorman
M.J. Abdulrazzak
Artificial groundwater recharge practice in Cyprus
201(14)
I. St. Iacovides
4 Recharge From Permanent Water Bodies
215
Ken Rushton
4.1 General considerations
215(3)
4.1.1 Introduction
215(1)
4.1.2 Processes
215(2)
4.1.3 Estimation techniques
217(1)
4.1.4 Data collection
217(1)
4.1.5 Further sources of information
218(1)
4.2 Recharge due to infiltration from rivers
218(5)
4.2.1 Introduction
218(1)
4.2.2 Processes in river -- aquifer interaction
218(3)
4.2.3 Estimation techniques
221(1)
4.2.4 Data collection
222(1)
4.2.5 Further sources of information
223(1)
4.3 Recharge from canals
223(10)
4.3.1 Introduction
223(1)
4.3.2 Flow processes
224(2)
4.3.3 Estimation techniques
226(5)
4.3.4 Data collection
231(1)
4.3.5 Further sources of information
232(1)
4.4 Recharge due to losses from flooded rice irrigation
233(8)
4.4.1 Introduction: Why is water lost from rice fields?
233(2)
4.4.2 Flow processes from rice field bund into an aquifer
235(1)
4.4.3 Estimation techniques
236(4)
4.4.4 Data collection
240(1)
4.4.5 Further sources of information
240(1)
4.5 Recharge from lakes
241(4)
4.5.1 Introduction
241(1)
4.5.2 Flow processes
241(1)
4.5.3 Estimation techniques
242(1)
4.5.4 Data collection
243(2)
4.5.5 Further sources of information
245(1)
4.6 Urban recharge
245(3)
4.6.1 Introduction
245(1)
4.6.2 Formulation
246(1)
4.6.3 Estimation techniques
247(1)
4.6.4 Data collection
247(1)
4.6.5 Further sources of information
248(1)
4.7 Artificial recharge
248
4.7.1 Introduction
248(1)
4.7.2 Processes
249(3)
4.7.3 Estimation techniques
252(1)
4.7.4 Data collection
252(1)
4.7.5 Further sources of information
253(1)
List of symbols
253(1)
References
254(5)
Case Studies
Losses from canals in Pakistan
259(12)
M.N. Bhutto
I. Javed
P. Dukker
Efficiency of artificial recharge from percolation tanks
271
M. Mehta
S.K. Jain
Dr Ian Simmers is Emeritus Professor of Geography at the Free University of Amsterdam.  His research interests were in recharge and flow in porous media as applied to the management and protection of wetlands, on which he has published extensively.  He is Editor in Chief of the publication series of IAH.