Atjaunināt sīkdatņu piekrišanu

Reciprocal Recommender Systems [Mīkstie vāki]

  • Formāts: Paperback / softback, 107 pages, height x width: 235x155 mm, XI, 107 p., 1 Paperback / softback
  • Sērija : SpringerBriefs in Computer Science
  • Izdošanas datums: 28-Feb-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031851021
  • ISBN-13: 9783031851025
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 107 pages, height x width: 235x155 mm, XI, 107 p., 1 Paperback / softback
  • Sērija : SpringerBriefs in Computer Science
  • Izdošanas datums: 28-Feb-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031851021
  • ISBN-13: 9783031851025
This book provides an introduction to reciprocal recommendation. It starts with theory, and then moves on to concrete examples of the most successful algorithms in the field. Researchers and developers with a little background in machine learning will find many of the algorithms are straightforward to implement, and code samples are included to help with this.





In addition to accessible algorithms, the book also examines some more cutting-edge research such as the recent interest in applying matching theory to reciprocal recommendation. These parts will be of interest both to developers who are looking to optimize their systems, and to researchers who might find avenues to further advance the field and develop new methods of recommending people to people.





By the end of this book, the reader will have a comprehensive understanding of the state of the art in reciprocal recommendation and will be equipped to design and implement their own systems.
Preface.-
1. Introduction.-
2. Theoretical Background.-
3. Collaborative
Filtering.-
4. Content-Based Filtering.-
5. Hybrid Filtering and Additional
Approaches.-
6. Matching Theory.-
7. Ethical Concerns and Future Work.
James Neve is a machine learning researcher with Eureka Inc. in Tokyo, designing AI systems including Reciprocal Recommender Systems (RRSs) for online dating services. He has a PhD in Machine Learning from the University of Bristol, specialized in RRSs, and he has published multiple papers on reciprocal recommendation in competitive conferences such as ACM RecSys.