Atjaunināt sīkdatņu piekrišanu

E-grāmata: Refining the Concept of Scientific Inference When Working with Big Data: Proceedings of a Workshop

  • Formāts: 114 pages
  • Izdošanas datums: 24-Feb-2017
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309454452
  • Formāts - PDF+DRM
  • Cena: 3,93 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 114 pages
  • Izdošanas datums: 24-Feb-2017
  • Izdevniecība: National Academies Press
  • Valoda: eng
  • ISBN-13: 9780309454452

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The concept of utilizing big data to enable scientific discovery has generated tremendous excitement and investment from both private and public sectors over the past decade, and expectations continue to grow. Using big data analytics to identify complex patterns hidden inside volumes of data that have never been combined could accelerate the rate of scientific discovery and lead to the development of beneficial technologies and products. However, producing actionable scientific knowledge from such large, complex data sets requires statistical models that produce reliable inferences (NRC, 2013). Without careful consideration of the suitability of both available data and the statistical models applied, analysis of big data may result in misleading correlations and false discoveries, which can potentially undermine confidence in scientific research if the results are not reproducible. In June 2016 the National Academies of Sciences, Engineering, and Medicine convened a workshop to examine critical challenges and opportunities in performing scientific inference reliably when working with big data. Participants explored new methodologic developments that hold significant promise and potential research program areas for the future. This publication summarizes the presentations and discussions from the workshop.

Table of Contents



Front Matter 1 Introduction 2 Framing the Workshop 3 Inference About Discoveries Based on Integration of Diverse Data Sets 4 Inference About Causal Discoveries Driven by Large Observational Data 5 Inference When Regularization Is Used to Simplify Fitting of High-Dimensional Models 6 Panel Discussion References Appendixes Appendix A: Registered Workshop Participants Appendix B: Workshop Agenda Appendix C: Acronyms
1 Front Matter; 2 1 Introduction; 3 2 Framing the Workshop; 4 3
Inference About Discoveries Based on Integration of Diverse Data Sets; 5 4
Inference About Causal Discoveries Driven by Large Observational Data; 6 5
Inference When Regularization Is Used to Simplify Fitting of High-Dimensional
Models; 7 6 Panel Discussion; 8 References; 9 Appendixes; 10 Appendix A:
Registered Workshop Participants; 11 Appendix B: Workshop Agenda; 12 Appendix
C: Acronyms