Atjaunināt sīkdatņu piekrišanu

E-grāmata: Refrigeration Systems and Applications

(KFUPM, Saudi Arabia)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 23-Mar-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119230786
  • Formāts - EPUB+DRM
  • Cena: 127,23 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 23-Mar-2017
  • Izdevniecība: John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119230786

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The definitive text/reference for students, researchers and practicing engineers

This book provides comprehensive coverage on refrigeration systems and applications, ranging from the fundamental principles of thermodynamics to food cooling applications for a wide range of sectoral utilizations. Energy and exergy analyses as well as performance assessments through energy and exergy efficiencies and energetic and exergetic coefficients of performance are explored, and numerous analysis techniques, models, correlations and procedures are introduced with examples and case studies. There are specific sections allocated to environmental impact assessment and sustainable development studies. Also featured are discussions of important recent developments in the field, including those stemming from the authors pioneering research.  

Refrigeration is a uniquely positioned multi-disciplinary field encompassing mechanical, chemical, industrial and food engineering, as well as chemistry. Its wide-ranging applications mean that the industry plays a key role in national and international economies. And it continues to be an area of active research, much of it focusing on making the technology as environmentally friendly and sustainable as possible without compromising cost efficiency and effectiveness.

This substantially updated and revised edition of the classic text/reference now features two new chapters devoted to renewable-energy-based integrated refrigeration systems and environmental impact/sustainability assessment. All examples and chapter-end problems have been updated as have conversion factors and the thermophysical properties of an array of materials.





Provides a solid foundation in the fundamental principles and the practical applications of refrigeration technologies Examines fundamental aspects of thermodynamics, refrigerants, as well as energy and exergy analyses and energy and exergy based performance assessment criteria and approaches Introduces environmental impact assessment methods and sustainability evaluation of refrigeration systems and applications Covers basic and advanced (and hence integrated) refrigeration cycles and systems, as well as a range of novel applications Discusses crucial industrial, technical and operational problems, as well as new performance improvement techniques and tools for better design and analysis Features clear explanations, numerous chapter-end problems and worked-out examples

Refrigeration Systems and Applications, Third Edition is an indispensable working resource for researchers and practitioners in the areas of Refrigeration and Air Conditioning. It is also an ideal textbook for graduate and senior undergraduate students in mechanical, chemical, biochemical, industrial and food engineering disciplines.
Preface xvii
Acknowledgments xix
1 General Aspects of Thermodynamics 1(70)
1.1 Introduction
1(1)
1.2 Dimensions and Units
2(7)
1.2.1 Systems of Units
2(7)
1.2.1.1 Mass
2(1)
1.2.1.2 Length
2(1)
1.2.1.3 Force
3(1)
1.2.1.4 Density and Specific Volume
3(1)
1.2.1.5 Mass Flow Rate and Volumetric Flow Rate
3(1)
1.2.1.6 Temperature
4(2)
1.2.1.7 Pressure
6(3)
1.3 Thermodynamics
9(21)
1.3.1 Thermodynamic Systems
9(1)
1.3.2 Thermodynamic Laws
10(1)
1.3.3 First Law of Thermodynamics
10(2)
1.3.4 Second Law of Thermodynamics
12(3)
1.3.4.1 Exergy and its Importance
13(2)
1.3.4.2 Reversibility and Irreversibility
15(1)
1.3.4.3 Reversible Work and Exergy Destruction
15(1)
1.3.5 Diner's Six-step Approach
15(10)
1.3.6 Pure Substances
25(11)
1.3.6.1 State and Change of State
25(2)
1.3.6.2 Vapor States
27(1)
1.3.6.3 Sensible Heat, Latent Heat and Latent Heat of Fusion
27(1)
1.3.6.4 Specific Heat
27(1)
1.3.6.5 Specific Internal Energy
28(1)
1.3.6.6 Specific Enthalpy
28(1)
1.3.6.7 Specific Entropy
28(1)
1.3.6.8 Energy Change and Energy Transfer
29(1)
1.3.6.9 Flow Energy
29(1)
1.3.6.10 Heat Transfer
29(1)
1.3.6.11 Work
30(1)
1.3.6.12 Thermodynamic Tables
30(1)
1.4 Ideal and Real Gases
30(6)
1.5 Refrigerators and Heat Pumps
36(13)
1.5.1 The Carnot Refrigerators and Heat Pumps
38(11)
1.6 Psychrometrics
49(15)
1.6.1 Common Definitions in Psychrometrics
50(2)
1.6.2 Balance Equations for Air and Water Vapor Mixtures
52(1)
1.6.3 The Psychrometric Chart
53(11)
1.7 Concluding Remarks
64(1)
Nomenclature
64(3)
Study Problems
67(3)
References
70(1)
2 Refrigerants 71(56)
2.1 Introduction
71(1)
2.2 Classification of Refrigerants
72(4)
2.2.1 Halocarbons
72(1)
2.2.2 Hydrocarbons
73(1)
2.2.3 Inorganic Compounds
74(1)
2.2.3.1 Ammonia (R-717)
74(1)
2.2.3.2 Carbon dioxide (R-744)
75(1)
2.2.3.3 Air (R-729)
75(1)
2.2.4 Azeotropic mixtures
75(1)
2.2.5 Nonazeotropic mixtures
76(1)
2.3 Prefixes and Decoding of Refrigerants
76(3)
2.3.1 Prefixes
76(1)
2.3.2 Decoding the Number
77(1)
2.3.3 Isomers
78(1)
2.4 Secondary Refrigerants
79(1)
2.5 Refrigerant-absorbent Combinations
80(2)
2.6 Stratospheric Ozone Layer
82(7)
2.6.1 Stratospheric Ozone Layer Depletion
84(1)
2.6.2 Ozone Depletion Potential
85(3)
2.6.3 Montreal Protocol
88(1)
2.7 Global Warming
89(5)
2.7.1 Global Warming Potential
93(1)
2.8 Clean Air Act
94(9)
2.8.1 Significant New Alternative Policies Program
94(2)
2.8.2 Classification of Substances
96(7)
2.9 Key Refrigerants
103(12)
2.9.1 R-134a
103(2)
2.9.2 R-123
105(1)
2.9.3 Nonazeotropic (Zeotropic) Mixtures
106(2)
2.9.4 Azeotropic Mixtures
108(2)
2.9.5 Ammonia (R-717)
110(1)
2.9.6 Propane (R-290)
111(2)
2.9.7 Carbon Dioxide (R-744)
113(2)
2.10 Selection of Refrigerants
115(7)
2.11 Thermophysical Properties of Refrigerants
116(4)
2.12 Lubricating Oils and their Effects
120(2)
2.13 Concluding Remarks
122(1)
Study Problems
122(3)
References
125(2)
3 Refrigeration System Components 127(62)
3.1 Introduction
127(1)
3.2 History of Refrigeration
128(2)
3.3 Main Refrigeration Systems
130(1)
3.4 Refrigeration System Components
131(1)
3.5 Compressors
132(24)
3.5.1 Hermetic Compressors
133(2)
3.5.2 Semi-hermetic Compressors
135(1)
3.5.3 Open Compressors
136(1)
3.5.4 Classification of Compressors
136(1)
3.5.5 Positive Displacement Compressors
137(7)
3.5.5.1 Reciprocating Compressors
137(1)
3.5.5.2 Rotary Compressors
137(7)
3.5.6 Dynamic Compressors
144(3)
3.5.6.1 Centrifugal Compressors
144(3)
3.5.6.2 Axial Compressors
147(1)
3.5.7 Thermodynamic Analysis of Compressor
147(2)
3.5.8 Compressor Capacity and Performance Assessment
149(7)
3.5.8.1 Compression Ratio
149(1)
3.5.8.2 Compressor Efficiency
150(1)
3.5.8.3 Compressor Capacity Control for Better Performance
151(5)
3.6 Condensers
156(9)
3.6.1 Water-cooled Condensers
157(1)
3.6.2 Air-cooled Condensers
157(1)
3.6.3 Evaporative Condensers
158(1)
3.6.4 Cooling Towers
159(1)
3.6.5 Thermodynamic Analysis of Condenser
160(5)
3.7 Evaporators
165(7)
3.7.1 Liquid Coolers
165(1)
3.7.2 Air and Gas Coolers
166(1)
3.7.3 Thermodynamic Analysis of Evaporator
167(5)
3.8 Throttling Devices
172(5)
3.8.1 Thermostatic Expansion Valves
172(1)
3.8.2 Constant Pressure Expansion Valves
173(1)
3.8.3 Float Valves
173(1)
3.8.4 Capillary Tubes
174(1)
3.8.5 Thermodynamic Analysis of Throttling Valve
174(3)
3.9 Auxiliary Devices
177(3)
3.9.1 Accumulators
177(1)
3.9.2 Receivers
178(1)
3.9.3 Oil Separators
178(1)
3.9.4 Strainers
179(1)
3.9.5 Dryers
179(1)
3.9.6 Check Valves
179(1)
3.9.7 Solenoid Valves
179(1)
3.9.8 Defrost Controllers
179(1)
3.10 Concluding Remarks
180(1)
Nomenclature
180(2)
Study Problems
182(5)
References
187(2)
4 Refrigeration Cycles and Systems 189(72)
4.1 Introduction
189(1)
4.2 Vapor-compression Refrigeration Systems
189(3)
4.2.1 Evaporation
190(1)
4.2.2 Compression
190(1)
4.2.3 Condensation
190(1)
4.2.4 Expansion
191(1)
4.3 Energy Analysis of Vapor-compression Refrigeration Cycle
192(3)
4.4 Exergy Analysis of Vapor-compression Refrigeration Cycle
195(5)
4.5 Actual Vapor-compression Refrigeration Cycle
200(10)
4.5.1 Superheating and Subcooling
201(3)
4.5.1.1 Superheating
201(2)
4.5.1.2 Subcooling
203(1)
4.5.2 Defrosting
204(1)
4.5.3 Purging Air in Refrigeration Systems
205(4)
4.5.3.1 Air Purging Methods
206(3)
4.5.4 Twin Refrigeration System
209(1)
4.6 Air-standard Refrigeration Systems
210(6)
4.6.1 Energy and Exergy Analyses of a Basic Air-standard Refrigeration Cycle
211(5)
4.7 Absorption Refrigeration Systems
216(29)
4.7.1 Basic Absorption Refrigeration Systems
218(1)
4.7.2 Ammonia-water (NH3-H20) Absorption Refrigeration Systems
219(2)
4.7.3 Energy Analysis of an Absorption Refrigeration System
221(3)
4.7.4 Three-fluid (Gas Diffusion) Absorption Refrigeration Systems
224(1)
4.7.5 Water-lithium Bromide (H20-LiBr) Absorption Refrigeration Systems
225(5)
4.7.5.1 Single-effect Absorption Refrigeration Systems
226(1)
4.7.5.2 Double-effect Absorption Refrigeration Systems
227(2)
4.7.5.3 Crystallization
229(1)
4.7.6 Steam Ejector Recompression Absorption Refrigeration Systems
230(1)
4.7.7 Electrochemical Absorption Refrigeration Systems
231(1)
4.7.8 Absorption-augmented Refrigeration System
232(7)
4.7.9 Exergy Analysis of an Absorption Refrigeration System
239(4)
4.7.10 Performance Evaluation of an Absorption Refrigeration System
243(2)
4.8 Concluding Remarks
245(1)
Nomenclature
245(2)
Study Problems
247(11)
References
258(3)
5 Advanced Refrigeration Cycles and Systems 261(96)
5.1 Introduction
261(1)
5.2 Multistage Refrigeration Cycles
262(6)
5.3 Cascade Refrigeration Systems
268(12)
5.3.1 Two-stage Cascade Systems
269(5)
5.3.2 Three-stage (Ternary) Cascade Refrigeration System
274(6)
5.4 Multi-effect Absorption Refrigeration Systems
280(31)
5.5 Steam-jet Refrigeration Systems
311(6)
5.6 Adsorption Refrigeration
317(5)
5.7 Stirling Cycle Refrigeration
322(6)
5.7.1 Performance Assessment
325(3)
5.8 Thermoelectric Refrigeration
328(4)
5.8.1 Performance Assessment of Thermoelectric Coolers
329(3)
5.9 Thermoacoustic Refrigeration
332(2)
5.10 Metal Hydride Refrigeration
334(3)
5.10.1 Operational Principles
335(1)
5.10.2 Regeneration Process
336(1)
5.10.3 Refrigeration Process
336(1)
5.11 Magnetic Refrigeration
337(8)
5.11.1 Magnetic Refrigeration Cycle
339(1)
5.11.2 Active Magnetic Regenerators
340(5)
5.12 Supermarket Refrigeration Practices
345(4)
5.12.1 Direct Expansion Systems
346(1)
5.12.2 Distributed Systems
347(1)
5.12.3 Secondary Loop Systems
348(1)
5.13 Concluding Remarks
349(1)
Nomenclature
349(2)
Study Problems
351(3)
References
354(3)
6 Renewable Energy-based Integrated Refrigeration Systems 357(42)
6.1 Introduction
357(1)
6.2 Solar-powered Absorption Refrigeration Systems
358(6)
6.3 Solar-powered Vapor-compression Refrigeration Systems
364(4)
6.4 Wind-powered Vapor-compression Refrigeration Systems
368(3)
6.5 Hydropowered Vapor-compression Refrigeration Systems
371(4)
6.6 Geothermal-powered Vapor-compression Refrigeration Systems
375(4)
6.7 Ocean Thermal Energy Conversion Powered Vapor-compression Refrigeration Systems
379(4)
6.8 Biomass-powered Absorption Refrigeration Systems
383(10)
6.9 Concluding Remarks
393(1)
Nomenclature
394(1)
Study Problems
395(3)
Reference
398(1)
7 Heat Pipes 399(42)
7.1 Introduction
399(1)
7.2 Heat Pipes
400(3)
7.2.1 Heat Pipe Use
403(1)
7.3 Heat Pipe Applications
403(2)
7.3.1 Heat Pipe Coolers
404(1)
7.3.2 Insulated Water Coolers
404(1)
7.3.3 Heat Exchanger Coolers
404(1)
7.4 Heat Pipes for Electronics Cooling
405(2)
7.5 Types of Heat Pipes
407(1)
7.5.1 Micro Heat Pipes
408(1)
7.5.2 Cryogenic Heat Pipes
408(1)
7.6 Heat Pipe Components
408(9)
7.6.1 Container
410(1)
7.6.2 Working Fluid
411(2)
7.6.3 Selection of Working Fluid
413(1)
7.6.4 Wick or Capillary Structure
414(3)
7.7 Operational Principles of Heat Pipes
417(4)
7.7.1 Heat Pipe Operating Predictions
418(3)
7.7.1.1 Gravity-aided Orientation
419(1)
7.7.1.2 Horizontal Orientation
419(1)
7.7.1.3 Against Gravity Orientation
420(1)
7.7.2 Heat Pipe Arrangement
421(1)
7.8 Heat Pipe Performance
421(3)
7.8.1 Effective Heat Pipe Thermal Resistance
423(1)
7.9 Design and Manufacture of Heat Pipes
424(4)
7.9.1 Thermal Conductivity of a Heat Pipe
427(1)
7.9.2 Common Heat Pipe Diameters and Lengths
427(1)
7.10 Heat-transfer Limitations
428(1)
7.11 Heat Pipes in Heating, Ventilating and Air Conditioning
429(7)
7.11.1 Dehumidifier Heat Pipes
430(3)
7.11.1.1 Working Principle
431(1)
7.11.1.2 Indoor Dehumidifier Heat Pipes
432(1)
7.11.2 Energy Recovery Heat Pipes
433(3)
7.12 Concluding Remarks
436(1)
Nomenclature
436(1)
Study Problems
437(2)
References
439(2)
8 Food Refrigeration 441(132)
8.1 Introduction
441(1)
8.2 Food Deterioration
442(1)
8.3 Food Preservation
443
8.4 Food Quality
441(5)
8.5 Food Precooling and Cooling
446(2)
8.6 Food Precooling Systems
448(29)
8.6.1 Energy Coefficient
449(1)
8.6.2 Hydrocooling
450(6)
8.6.2.1 Hydrocooling using Ice or Ice-slush Cooling
453(1)
8.6.2.2 Hydrocooling using Artificial Ice
453(1)
8.6.2.3 Hydrocooling using Natural Ice
454(1)
8.6.2.4 Hydrocooling using Natural Snow
455(1)
8.6.2.5 Hydrocooling using Compacted Snow
455(1)
8.6.3 Forced-air Cooling
456(13)
8.6.3.1 Methods of Forced-air Cooling
459(2)
8.6.3.2 Cold-wall-type Tunnel Forced-air Cooling
461(2)
8.6.3.3 Serpentine Cooling
463(1)
8.6.3.4 Single-pallet Forced-air Cooling
464(1)
8.6.3.5 Room Cooling (with Storage and Shipping)
464(1)
8.6.3.6 Ice-bank Forced-air Cooling System
464(1)
8.6.3.7 Forced-air Cooling with Winter Coldness
465(1)
8.6.3.8 Technical Details of Forced-air Cooling Systems
466(2)
8.6.3.9 Engineering/economic Model for Forced-air Cooling Systems
468(1)
8.6.4 Hydraircooling
469(2)
8.6.5 Vacuum Cooling
471(4)
8.6.6 Hydrovac Cooling
475(1)
8.6.7 Evaporative Cooling
475(1)
8.6.8 Ice Cooling
476(1)
8.7 Precooling of Milk
477(2)
8.8 Food Freezing
479(1)
8.9 Cool and Cold Storage
480(16)
8.9.1 Chilling Injury
481(1)
8.9.2 Optimum Storage Conditions
481(4)
8.9.2.1 Optimum Temperature
481(1)
8.9.2.2 Optimum Relative Humidity
482(3)
8.9.3 Technical Aspects of Cold Stores
485(5)
8.9.3.1 Shape and Size
486(1)
8.9.3.2 Construction Methods
486(1)
8.9.3.3 Insulation
487(1)
8.9.3.4 Vapor Barriers
488(1)
8.9.3.5 Floors
488(1)
8.9.3.6 Cold-air Distribution
488(1)
8.9.3.7 Defrosting
489(1)
8.9.3.8 Cold Store Planning
489(1)
8.9.3.9 Refrigeration
490(1)
8.9.4 Calculation of Cold Store Refrigeration Loads
490(2)
8.9.5 Energy-efficient Cold Store
492(1)
8.9.6 Photovoltaic-powered Cold Store
493(3)
8.10 Controlled Atmosphere Storage
496(10)
8.10.1 Controlled Atmosphere Storage Ripening and Waxing
500(1)
8.10.2 Container-controlled Atmospheres
501(2)
8.10.2.1 Controlled Modified Atmosphere Systems
501(1)
8.10.2.2 Modified Atmospheres in Containers
502(1)
8.10.2.3 Modified Atmospheres in Packaging
502(1)
8.10.2.4 Pressure Swing Absorption Systems
502(1)
8.10.2.5 Membrane Separation Systems
502(1)
8.10.3 Packaging
503(1)
8.10.4 Definitions
503(1)
8.10.5 Modified Atmosphere Packaging
503(2)
8.10.6 Modified Atmosphere Cooling
505(1)
8.11 Refrigerated Transport
506(9)
8.11.1 Reefer Technology
507(1)
8.11.1.1 Controlled-atmosphere Reefer Containers
507(1)
8.11.2 Quality Aspects of Products
507(1)
8.11.3 Effective Packaging for Quality
508(1)
8.11.4 Transport Storage
509(2)
8.11.5 Temperature Control
511(2)
8.11.5.1 Temperature Control and Monitoring
512(1)
8.11.5.2 Temperature Monitoring Systems
513(1)
8.11.6 Transportation Aspects
513(1)
8.11.7 Recommended Transit and Storage Procedures
514(1)
8.11.8 Developments in Refrigerated Transport
514(1)
8.11.8.1 Sea and Land Transport
515(1)
8.11.8.2 Air Transport
515(1)
8.12 Respiration (Heat Generation)
515(1)
8.12.1 Measurement of Respiratory Heat Generation
516(1)
8.13 Transpiration (Moisture Loss)
516(6)
8.13.1 Shrinkage
521(1)
8.14 Cooling Process Parameters
522(2)
8.14.1 Cooling Coefficient
522(1)
8.14.2 Lag Factor
523(1)
8.14.3 Half Cooling Time
523(1)
8.14.4 Seven-eighths Cooling Time
523(1)
8.15 Analysis of Cooling Process Parameters
524(5)
8.15.1 Lin et alts Model for Irregular Shapes
527(2)
8.16 Fourier-Reynolds Correlations
529(4)
8.16.1 Development of Fourier-Reynolds Correlations
530(3)
8.17 Cooling Heat-transfer Parameters
533(27)
8.17.1 Specific Heat
533(2)
8.17.1.1 Some Correlations for Specific Heat
534(1)
8.17.2 Thermal Conductivity
535(3)
8.17.2.1 Some Correlations for Thermal Conductivity
536(2)
8.17.3 Thermal Diffusivity
538(2)
8.17.4 Effective Heat-transfer Coefficients
540(7)
8.17.4.1 Smith et al.'s Model
543(1)
8.17.4.2 Ansari's Model
544(1)
8.17.4.3 Stewart et al.'s Model
544(1)
8.17.4.4 Dincer and Dost's Models
545(1)
8.17.4.5 Some Methods for Effective Heat-transfer Coefficients
546(1)
8.17.5 Modeling for Thermal Diffusivity and Heat-transfer Coefficient
547(8)
8.17.6 Effective Nusselt-Reynolds Correlations
555(2)
8.17.7 The Dincer Number
557(3)
8.18 Conclusions
560(1)
Nomenclature
561(2)
Study Problems
563(2)
References
565(8)
9 Food Freezing 573(58)
9.1 Introduction
573(1)
9.2 Food Freezing Aspects
574(3)
9.2.1 Enzymatic Reactions
575(1)
9.2.2 Microbiological Activities
576(1)
9.3 Quick Freezing
577(1)
9.4 Enthalpy
577(1)
9.5 Crystallization
578(1)
9.6 Moisture Migration
579(1)
9.7 Weight Loss
579(1)
9.8 Blanching
580(2)
9.9 Packaging
582(1)
9.10 Quality of Frozen Foods
582(3)
9.10.1 Objective Tests
583(1)
9.10.2 Sensory Tests
583(1)
9.10.3 Tests on the Kinetics of Quality Loss
583(2)
9.11 Food Freezing Process
585(3)
9.11.1 Freezing of Fruits
586(1)
9.11.2 Freezing of Vegetables
586(2)
9.12 Freezing Point
588(1)
9.13 Freezing Rate
589(1)
9.14 Freezing Times
590(8)
9.14.1 Plank's Model
592(1)
9.14.2 Mellor's Model
592(1)
9.14.3 Pham's Model
593(1)
9.14.4 Cleland and Earle's Model
594(1)
9.14.5 Mannapperuma et al.'s Model
595(3)
9.15 Freezing Equipment
598(15)
9.15.1 Tunnel Freezers
599(5)
9.15.1.1 Packaged Tunnel Freezers
600(1)
9.15.1.2 Modular Tunnel Freezers
601(1)
9.15.1.3 Multipass Tunnel Freezers
602(1)
9.15.1.4 Contact Belt Tunnel Freezers
603(1)
9.15.1.5 Drag Thru Doly Freezers
603(1)
9.15.2 Spiral Freezers
604(2)
9.15.2.1 Packaged Spiral Freezers
605(1)
9.15.2.2 Site-built Spiral Freezers
606(1)
9.15.3 Plate (Tray) Freezers
606(2)
9.15.3.1 Packaged Tray Freezers
608(1)
9.15.4 Impingement Jet Freezers
608(1)
9.15.5 Cryogenic Freezers
609(3)
9.15.5.1 Immersing Cryogenic Freezers
611(1)
9.15.5.2 Tunnel Cryogenic Freezers
612(1)
9.15.6 Control in Freezers
612(1)
9.16 Ice Making
613(2)
9.16.1 Block Ice Manufacture
613(1)
9.16.2 Shell Ice Manufacture
614(1)
9.16.3 Flake Ice Manufacture
614(1)
9.16.4 Tube Ice Manufacture
614(1)
9.16.5 Plate Ice Manufacture
615(1)
9.16.6 Slush, Slurry or Binary Ice Manufacture
615(1)
9.17 Thawing
615(1)
9.18 Freeze-drying
616(9)
9.18.1 Operation Principles
617(2)
9.18.2 Freeze-drying Times
619(2)
9.18.3 Freeze-dryers
621(4)
9.18.3.1 Batch-type Freeze-dryers
622(2)
9.18.3.2 Continuous-type Freeze-dryers
624(1)
9.18.3.3 Microwave and Dielectric Freeze-dryers
625(1)
9.18.4 Atmospheric Freeze-drying
625(1)
9.19 Conclusions
625(1)
Nomenclature
626(1)
Study Problems
627(1)
References
628(3)
10 Environmental Impact and Sustainability Assessment of Refrigeration Systems 631(40)
10.1 Introduction
631(2)
10.2 Environmental Concerns
633(4)
10.3 Energy and Environmental Impact
637(1)
10.4 Dincer's Six Pillars
638(1)
10.5 Dincer's 3S Concept
638(1)
10.6 System Greenization
639(2)
10.7 Sustainability
641(2)
10.8 Energy and Sustainability
643(2)
10.9 Exergy and Sustainability
645(22)
10.10 Concluding Remarks
667(1)
Study Problems
668(1)
References
668(3)
Appendix A Conversion Factors 671(4)
Appendix B Thermophysical Properties 675(26)
Appendix C Food Refrigeration Data 701(18)
Index 719
Ibrahim Dincer, PhD, is a full professor of Mechanical Engineering in the Faculty of Engineering and Applied Science at UOIT and a leading authority in the area of sustainable energy systems, including refrigeration systems and applications. He is Vice President for Strategy in International Association for Hydrogen Energy (IAHE) and Vice-President for World Society of Sustainable Energy Technologies (WSSET). Renowned for his pioneering works in the area of sustainable energy technologies, Professor Dincer has authored and co-authored numerous books and book chapters, more than a thousand refereed journal and conference papers, and many technical reports. He has chaired many national and international conferences, symposia, workshops and technical meetings and has delivered more than 300 keynote and invited lectures. Professor Dincer is an active member of various international scientific organizations and societies, and serves as editor-in-chief, associate editor, regional editor, and editorial board member on various prestigious international journals. He is a recipient of several research, teaching and service awards, including the Premier's research excellence award in Ontario, Canada, in 2004. Professor Dincer has made innovative contributions to the understanding and development of sustainable energy technologies and their implementation. He has actively been working in the areas of hydrogen and fuel cell technologies, and his group has developed various novel technologies/methods, etc. Furthermore, he has been recognized by Thomson Reuters as one of the World's Most Influential Scientific Minds in Engineering in 2014, 2015 and 2016.