Atjaunināt sīkdatņu piekrišanu

Regression in Engineering and the Applied Sciences: Applications in R 2025 ed. [Hardback]

  • Formāts: Hardback, 205 pages, height x width: 240x168 mm, 5 Illustrations, color; 1 Illustrations, black and white; XVIII, 205 p. 6 illus., 5 illus. in color., 1 Hardback
  • Sērija : Synthesis Lectures on Mathematics & Statistics
  • Izdošanas datums: 25-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031766717
  • ISBN-13: 9783031766718
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 37,98 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 44,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 205 pages, height x width: 240x168 mm, 5 Illustrations, color; 1 Illustrations, black and white; XVIII, 205 p. 6 illus., 5 illus. in color., 1 Hardback
  • Sērija : Synthesis Lectures on Mathematics & Statistics
  • Izdošanas datums: 25-Apr-2025
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031766717
  • ISBN-13: 9783031766718
Citas grāmatas par šo tēmu:

This book presents a broad range of regression models including count regression models, constrained and penalised regression models such as ridge, LASSO, and elasticnet regression that are used in various applied science fields. The author describes the historical development of the least squares principle, simple linear regression, and Polynomial regression. In addition, logistic regression and multiple linear regression are discussed at length. A novel method to estimate the slope of linear regression is presented along with an emphasis on the importance of numeric problems.

Types of Regression.- Simple Liner Regression.- Logistic Regression.- Multiple Linear Regression.- Applications of Regression.

Rajan Chattamvelli, Ph.D., is a Professor in the School of Advanced Sciences at Amrita University, India.  He has published more than 20 research articles in international journals, and his research interests include computational statistics, design of algorithms, parallel computing, data mining, machine learning, blockchain, combinatorics, and big data analytics.