Atjaunināt sīkdatņu piekrišanu

Regression Modeling for Linguistic Data [Mīkstie vāki]

  • Formāts: Paperback / softback, 454 pages, height x width: 254x178 mm, 6 colour illustrations, 90 black and white illustrations
  • Izdošanas datums: 06-Jun-2023
  • Izdevniecība: MIT Press
  • ISBN-10: 0262045486
  • ISBN-13: 9780262045483
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 76,82 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 454 pages, height x width: 254x178 mm, 6 colour illustrations, 90 black and white illustrations
  • Izdošanas datums: 06-Jun-2023
  • Izdevniecība: MIT Press
  • ISBN-10: 0262045486
  • ISBN-13: 9780262045483
Citas grāmatas par šo tēmu:
The first comprehensive textbook on regression modeling for linguistic data offers an incisive conceptual overview along with worked examples that teach practical skills for realistic data analysis.

In the first comprehensive textbook on regression modeling for linguistic data in a frequentist framework, Morgan Sonderegger provides graduate students and researchers with an incisive conceptual overview along with worked examples that teach practical skills for realistic data analysis. The book features extensive treatment of mixed-effects regression models, the most widely used statistical method for analyzing linguistic data. 

Sonderegger begins with preliminaries to regression modeling: assumptions, inferential statistics, hypothesis testing, power, and other errors. He then covers regression models for non-clustered data: linear regression, model selection and validation, logistic regression, and applied topics such as contrast coding and nonlinear effects. The last three chapters discuss regression models for clustered data: linear and logistic mixed-effects models as well as model predictions, convergence, and model selection. The book’s focused scope and practical emphasis will equip readers to implement these methods and understand how they are used in current work.

  • The only advanced discussion of modeling for linguists
  • Uses R throughout, in practical examples using real datasets
  • Extensive treatment of mixed-effects regression models
  • Contains detailed, clear guidance on reporting models
  • Equal emphasis on observational data and data from controlled experiments
  • Suitable for graduate students and researchers with computational interests across linguistics and cognitive science

Papildus informācija

Short-listed for PROSE Award - Mathematics.
Preface xi
1 Preliminaries
1(6)
1.1 Our R Toolset
1(1)
1.2 Our Approach
1(2)
1.3 Context
3(4)
2 Samples, Estimates, and Hypothesis Tests
7(32)
2.1 Preliminaries
7(2)
2.2 Point Estimation
9(5)
2.3 Uncertainty and Interval Estimation
14(5)
2.4 Hypothesis Testing
19(8)
2.5 Parametric and Nonparametric Tests
27(6)
2.6 Common Misconceptions about p-Values
33(1)
2.7 Reporting Hypothesis Tests
34(2)
2.8 Further Reading
36(3)
Exercises
37(2)
3 Effect Size, Power, and Error
39(30)
3.1 Preliminaries
39(1)
3.2 Effect Size
40(7)
3.3 Type I/II Errors and Power
47(12)
3.4 Error in Effect Size: Type M and Type S Errors
59(4)
3.5 Assumptions of Hypothesis Tests and Consequences
63(5)
3.6 Further Reading
68(1)
Exercises
68(1)
4 Linear Regression 1
69(26)
4.1 Preliminaries
69(1)
4.2 Regression: General Introduction
70(3)
4.3 Simple Linear Regression
73(8)
4.4 Multiple Linear Regression
81(4)
4.5 Interactions
85(6)
4.6 Reporting a Linear Regression Model
91(2)
4.7 Further Reading
93(2)
Exercises
93(2)
5 Linear Regression 2
95(52)
5.1 Preliminaries
95(1)
5.2 Linear Regression Assumptions
96(2)
5.3 Problems with the Errors
98(4)
5.4 Problems with the Model
102(4)
5.5 Transformations
106(7)
5.6 Problems with Predictors
113(8)
5.7 Problems with Observations
121(5)
5.8 Trade-Offs between Models
126(4)
5.9 Model Comparison
130(6)
5.10 Variable Selection
136(9)
5.11 Further Reading
145(2)
Exercises
146(1)
6 Categorical Data Analysis and Logistic Regression
147(44)
6.1 Preliminaries
147(2)
6.2 Categorical Data Analysis
149(5)
6.3 Odds and Odds Ratios
154(4)
6.4 Simple Logistic Regression
158(5)
6.5 Inference for Logistic Regression
163(3)
6.6 Goodness of Fit
166(2)
6.7 Multiple Logistic Regression
168(9)
6.8 Model Validation
177(7)
6.9 Reporting and Summarizing
184(4)
6.10 Further Reading
188(3)
Exercises
188(3)
7 Practical Regression Topics
191(50)
7.1 Preliminaries
191(2)
7.2 Multilevel Factors: Contrast Coding
193(19)
7.3 Omnibus and Post Hoc Tests
212(6)
7.4 Interpreting Interactions
218(9)
7.5 Nonlinear Effects
227(11)
7.6 Collinearity Diagnostics Revisited
238(1)
7.7 Further Reading
239(2)
Exercises
239(2)
8 Mixed-Effects Models 1: Linear Regression
241(72)
8.1 Preliminaries
241(1)
8.2 Motivation: Grouped Data
242(2)
8.3 Linear Mixed Models: Introduction
244(12)
8.4 Random Slopes
256(11)
8.5 Hypothesis Tests
267(11)
8.6 Model Summaries
278(2)
8.7 Random-Effect Correlations
280(11)
8.8 Model Predictions
291(6)
8.9 Reporting the Fitted Model
297(1)
8.10 Model Validation
298(11)
8.11 Further Reading
309(4)
Exercises
310(3)
9 Mixed-Effects Models 2: Logistic Regression
313(44)
9.1 Preliminaries
313(2)
9.2 Introduction
315(6)
9.3 Two Grouping Factors, Random Intercepts and Slopes
321(6)
9.4 Hypothesis Tests
327(5)
9.5 Model Summaries
332(5)
9.6 Model Validation
337(3)
9.7 Nonlinear and Factor Effects
340(10)
9.8 Variable Importance
350(4)
9.9 Reporting a Mixed-Effects Logistic Regression
354(1)
9.10 Further Reading
354(3)
Exercises
355(2)
10 Mixed-Effects Models 3: Practical and Advanced Topics
357(52)
10.1 Preliminaries
357(3)
10.2 More on Random Effects
360(4)
10.3 Model Convergence
364(10)
10.4 Singular Models
374(5)
10.5 Model Selection
379(16)
10.6 Predictions and Uncertainty for Individual Levels
395(8)
10.7 Nonlinear Effects
403(2)
10.8 Power for Mixed-Effects Models
405(2)
10.9 Further Reading
407(2)
Exercises
407(2)
A Appendix: Datasets
409(2)
A.1 transitions
409(1)
A.2 vot
409(2)
B Appendix: R Packages
411(2)
Selected Abbreviations 413(2)
Bibliography 415(12)
Topic Index 427(10)
Function Index 437