Atjaunināt sīkdatņu piekrišanu

E-grāmata: Regularity of Free Boundaries in Obstacle-Type Problems

  • Formāts: 221 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 07-Nov-2012
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9780821889916
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 68,97 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 221 pages
  • Sērija : Graduate Studies in Mathematics
  • Izdošanas datums: 07-Nov-2012
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9780821889916
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.
Preface ix
Introduction 1(6)
Suggestions for reading/teaching
5(2)
Chapter 1 Model problems
7(22)
§1.1 Catalog of problems
7(8)
§1.2 Model Problems A, B, C
15(2)
§1.3 W2, p regularity of solutions
17(5)
Notes
22(2)
Exercises
24(5)
Chapter 2 Optimal regularity of solutions
29(28)
§2.1 Optimal regularity in the classical obstacle problem
29(3)
§2.2 ACF monotonicity formula and generalizations
32(10)
§2.3 Optimal regularity in obstacle-type problems
42(3)
§2.4 Optimal regularity up to the fixed boundary
45(4)
§2.5 A counterexample
49(2)
Notes
51(2)
Exercises
53(4)
Chapter 3 Preliminary analysis of the free boundary
57(24)
§3.1 Nondegeneracy
57(4)
§3.2 Lebesgue and Hausdorff measures of the free boundary
61(4)
§3.3 Classes of solutions, rescalings, and blowups
65(3)
§3.4 Blowups
68(6)
§3.5 Weiss-type monotonicity formulas
74(4)
Notes
78(1)
Exercises
79(2)
Chapter 4 Regularity of the free boundary: first results
81(18)
§4.1 Problem A: C1 regularity of the free boundary near regular points
81(6)
§4.2 Problem B: the local structure of the patches
87(4)
§4.3 Problems A and B: higher regularity of the free boundary
91(1)
§4.4 Problem C: the free boundary near the branch points
92(3)
§4.5 Problem C: real analyticity of Γ*
95(1)
Notes
96(1)
Exercises
97(2)
Chapter 5 Global solutions
99(16)
§5.1 Classical obstacle problem
100(1)
§5.2 Problems A, B
101(7)
§5.3 Problem C
108(1)
§5.4 Approximation by global solutions
109(3)
Notes
112(1)
Exercises
112(3)
Chapter 6 Regularity of the free boundary: uniform results
115(18)
§6.1 Lipschitz regularity of the free boundary
115(5)
§6.2 C1,α Regularity of the free boundary: Problems A and B
120(4)
§6.3 C1 regularity of the free boundary: Problem C
124(4)
§6.4 Higher regularity: Problems A and B
128(3)
Notes
131(1)
Exercises
132(1)
Chapter 7 The singular set
133(20)
§7.1 The characterization of the singular set
133(2)
§7.2 Polynomial solutions
135(1)
§7.3 Examples of singularities
136(2)
§7.4 Singular set: classical obstacle problem
138(5)
§7.5 Singular set: Problem A
143(6)
Notes
149(1)
Exercises
149(4)
Chapter 8 Touch with the fixed boundary
153(14)
§8.1 Contact points
153(2)
§8.2 Global solutions in half-spaces
155(4)
§8.3 Behavior of the free boundary near the fixed boundary
159(3)
§8.4 Uniqueness of blowups at contact points
162(2)
Notes
164(1)
Exercises
165(2)
Chapter 9 The thin obstacle problem
167(44)
§9.1 The thin obstacle problem
167(4)
§9.2 C1,α regularity
171(2)
§9.3 Almgren's frequency formula
173(3)
§9.4 Rescalings and blowups
176(5)
§9.5 Optimal regularity
181(2)
§9.6 The regular set
183(3)
§9.7 The singular set
186(2)
§9.8 Weiss- and Monneau-type monotonicity formulas
188(4)
§9.9 The structure of the singular set
192(4)
Notes
196(1)
Exercises
197(14)
Bibliography
201(10)
Notation
211(6)
Basic notation
211(1)
Function spaces
212(2)
Notation related to free boundaries
214(3)
Index 217
Arshak Petrosyan, Purdue University, West Lafayette, IN, USA

Henrik Shahgholian, Royal Institute of Technology, Stockholm, Sweden

Nina Uraltseva, St. Petersburg University, St. Petersburg, Russia