Atjaunināt sīkdatņu piekrišanu

Regularity and Strict Positivity of Densities for the Nonlinear Stochastic Heat Equations [Mīkstie vāki]

  • Formāts: Paperback / softback, height x width: 254x178 mm, weight: 210 g, Illustrations
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Mar-2022
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470450003
  • ISBN-13: 9781470450007
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, height x width: 254x178 mm, weight: 210 g, Illustrations
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 30-Mar-2022
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470450003
  • ISBN-13: 9781470450007
Citas grāmatas par šo tēmu:
"In this paper, we establish a necessary and sufficient condition for the existence and regularity of the density of the solution to a semilinear stochastic (fractional) heat equation with measure-valued initial conditions. Under a mild cone condition for the diffusion coefficient, we establish the smooth joint density at multiple points. The tool we use is Malliavin calculus. The main ingredient is to prove that the solutions to a related stochastic partial differential equation have negative moments ofall orders. Because we cannot prove u(t, x) D for measure-valued initial data, we need a localized version of Malliavin calculus. Furthermore, we prove that the (joint) density is strictly positive in the interior of the support of the law, where we allow both measure-valued initial data and unbounded diffusion coefficient. The criteria introduced by Bally and Pardoux are no longer applicable for the parabolic Anderson model. We have extended their criteria to a localized version. Our general framework includes the parabolic Anderson model as a special case"--

Chen, Hu, and Nualart establish a necessary and sufficient condition for the existence and regularity of the density of the solution to a semilinear stochastic (fractional) heat equation with measure-valued initial conditions. Under a mild cone condition for the diffusion coefficient, they establish the smooth joint density at multiple points using Malliavin calculus. Their main result is to prove that the solutions to a related stochastic partial differential equation have negative moments of all orders. Annotation ©2022 Ringgold, Inc., Portland, OR (protoview.com)
Le Chen, Emory University, Atlanta, GA.

Yaozhong Hu, University of Alberta at Edmonton, Canada.

David Nualart, University of Kansas, Lawrence, KS.