Atjaunināt sīkdatņu piekrišanu

E-grāmata: Reinforced Concrete Design to Eurocode 2

  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook describes the basic mechanical features of plain concrete and explains the main resistance mechanisms activated in reinforced concrete structures when they are subjected to axial force, bending moment, shear, eccentric compression, pre- and post-tensioning, and torsion. It presents a complete set of limit-state design criteria of the modern theory of reinforced concrete, incorporating the final version of the official Eurocode 2: references to the various sections of the EN design codes of concrete structures are provided throughout the book to facilitate its use by students and practitioners.The book examines methodological more than notional aspects of the presented topics, focusing on the verifications of assumptions, the rigorousness of the analysis, and the consequent degree of reliability of results. Each chapter develops an organic topic, which is eventually illustrated by examples in each final paragraph containing the relevant numerical applications. These

practical end-of-chapter appendices and intuitive flow charts ensure a smooth learning experience.The book will be an ideal learning resource for students of structural design and analysis courses in civil engineering, building construction, and architecture, as well as a valuable reference for concrete structural design professionals in practice.

General concepts on reinforced concrete.- Centred axial force.- Bending moment.- Shear.- Beams in bending.- Eccentric axial force.- Instability problems.- Torsion.- Structural elements for foundations.- Prestressed beams. References.
1 General Concepts on Reinforced Concrete
1(82)
1.1 Mechanical Characteristics of Concrete
1(21)
1.1.1 Basic Properties of Concrete
2(8)
1.1.2 Strength Parameters and Their Correlation
10(8)
1.1.3 Failure Criteria of Concrete
18(4)
1.2 Creep
22(11)
1.2.1 Principles of Creep
23(3)
1.2.2 Creep with Variable Stresses
26(2)
1.2.3 Models of Linear Creep
28(5)
1.3 Structural Effects of Creep
33(7)
1.3.1 Resolution of the Integral Equation
35(2)
1.3.2 General Method
37(1)
1.3.3 Algebraic Methods
38(2)
1.4 Behaviour of Reinforced Concrete Sections
40(43)
1.4.1 Mechanical Characteristics of Reinforcement
41(5)
1.4.2 Basic Assumptions for Resistance Calculation
46(6)
1.4.3 Steel--Concrete Bond
52(5)
Appendix: Characteristics of Materials
57(26)
2 Centred Axial Force
83(86)
2.1 Compression Elements
83(18)
2.1.1 Elastic and Resistance Design
87(4)
2.1.2 Effect of Confining Reinforcement
91(5)
2.1.3 Effects of Viscous Deformations
96(5)
2.2 Tension Elements
101(12)
2.2.1 Verifications of Sections
102(2)
2.2.2 Prestressed Tie Members
104(4)
2.2.3 Cracking in Reinforced Concrete Ties
108(5)
2.3 Cracking Calculations
113(11)
2.3.1 The Cracking Process
114(2)
2.3.2 Crack Width
116(4)
2.3.3 Verification Criteria
120(4)
2.4 Case A: RC Multi-storey Building
124(45)
2.4.1 Actions on Columns and Preliminary Verifications
126(12)
2.4.2 Notes on Reinforced Concrete Technology
138(9)
2.4.3 Durability Criteria of Reinforced Concrete Structures
147(4)
Appendix: General Aspects and Axial Force
151(18)
3 Bending Moment
169(94)
3.1 Analysis of Sections in Bending
169(28)
3.1.1 Elastic Design of Sections
172(8)
3.1.2 Resistance Design of Sections
180(9)
3.1.3 Prestressed Sections
189(8)
3.2 Flexural Cracking of Beams
197(7)
3.2.1 Crack Spacing
198(2)
3.2.2 Crack Width
200(2)
3.2.3 Verification Criteria
202(2)
3.3 Deformation of Sections in Bending
204(27)
3.3.1 Effects of Creep
207(13)
3.3.2 Moment-Curvature Diagrams
220(6)
3.3.3 Flexural Behaviour Parameters
226(5)
3.4 Case A: Design of Floors
231(32)
3.4.1 Analysis of Actions
235(8)
3.4.2 Service Verifications
243(3)
3.4.3 Resistance Verifications
246(6)
Appendix: Actions and Bending Moment
252(11)
4 Shear
263(78)
4.1 Behaviour of RC Beams in Shear
263(13)
4.1.1 Cracking of Beams
265(2)
4.1.2 Longitudinal Shear and Shear Reinforcement
267(3)
4.1.3 Morsch Truss Model
270(6)
4.2 Beams Without Shear Reinforcement
276(19)
4.2.1 Analysis of Tooth Model
278(5)
4.2.2 Other Resistance Contributions
283(5)
4.2.3 Verification Calculations
288(7)
4.3 Beams with Shear Reinforcement
295(20)
4.3.1 The Modified Hyperstatic Truss Model
298(4)
4.3.2 The Variable Strut Inclination Truss Model
302(9)
4.3.3 Serviceability Verifications
311(4)
4.4 Case A: Beams Design
315(26)
4.4.1 Analysis of Actions
319(7)
4.4.2 Serviceability Verifications
326(3)
4.4.3 Resistance Verifications
329(3)
Appendix: Shear
332(9)
5 Beams in Bending
341(88)
5.1 Calculation Models of Beams in Bending
341(19)
5.1.1 Arch Behaviour
345(6)
5.1.2 Truss Model
351(4)
5.1.3 Standard Application Procedure
355(5)
5.2 Strut-and-Tie Balanced Schemes
360(28)
5.2.1 Support Details
364(10)
5.2.2 Corbels and Deep Beams
374(8)
5.2.3 Punching Shear in Slabs
382(6)
5.3 Flexural Deformations of Beams
388(18)
5.3.1 Curvature Integration
391(3)
5.3.2 Nonlinear Analysis of Hyperstatic Beams
394(4)
5.3.3 Collapse Behaviour of Hyperstatic Beams
398(8)
5.4 Case A: Shallow Rectangular Beam
406(23)
5.4.1 Serviceability Verifications
409(4)
5.4.2 Resistance Verifications
413(5)
5.4.3 Deflection Calculations
418(3)
Appendix: Elements in Bending
421(8)
6 Eccentric Axial Force
429(102)
6.1 Elastic Design of the Section
429(15)
6.1.1 Axial Compression Force with Small Eccentricity
431(5)
6.1.2 Compression and Tension with Uniaxial Bending
436(4)
6.1.3 Compression and Tension with Biaxial Bending
440(4)
6.2 Resistance Design of the Section
444(26)
6.2.1 Failure Mechanisms of the Section
446(5)
6.2.2 Resistance Verifications of the Section
451(11)
6.2.3 Design for Biaxial Bending
462(8)
6.3 Flexural Behaviour of Columns
470(23)
6.3.1 Design Models of Columns
471(5)
6.3.2 Moment-Curvature Diagrams
476(7)
6.3.3 Nonlinear Analysis of Frames
483(10)
6.4 Case A: Design of Columns
493(38)
6.4.1 Flexural Actions in Columns
495(4)
6.4.2 Serviceability Verifications
499(4)
6.4.3 Resistance Calculations
503(5)
Appendix: Eccentric Axial Force
508(23)
7 Instability Problems
531(34)
7.1 Instability of Reinforced Concrete Columns
531(17)
7.1.1 Analysis of Columns Under Eccentric Axial Force
535(4)
7.1.2 Methods of Concentration of Equilibrium
539(4)
7.1.3 Creep Effects
543(5)
7.2 Second-Order Analysis of Frames
548(17)
7.2.1 One-Storey Frames
550(3)
7.2.2 Multistorey Frames
553(4)
7.2.3 General Case of Frames
557(2)
Appendix: Instability of Columns
559(6)
8 Torsion
565(56)
8.1 Beams Subject to Torsion
565(25)
8.1.1 Peripheral Resisting Truss
571(7)
8.1.2 Improvement and Application of the Model
578(8)
8.1.3 Other Aspects of the Torsional Behaviour
586(4)
8.2 Case A: Stability Core
590(31)
8.2.1 Calculation of Internal Forces
592(6)
8.2.2 Verifications of the Current Section
598(9)
8.2.3 Verifications of Lintels and Stairs
607(5)
Appendix: Torsion
612(9)
9 Structural Elements for Foundations
621(90)
9.1 Isolated Foundations
621(19)
9.1.1 Massive Foundations
626(5)
9.1.2 Footing Foundations
631(5)
9.1.3 Pile Foundations
636(4)
9.2 Continuous Foundations
640(16)
9.2.1 Foundation Beams
644(4)
9.2.2 Structure--Foundation Interaction
648(4)
9.2.3 Foundation Grids and Rafts
652(4)
9.3 Retaining Walls
656(19)
9.3.1 Gravity Walls
662(5)
9.3.2 Foundation Retaining Walls
667(2)
9.3.3 Diaphragm Walls
669(6)
9.4 Case A: Foundation Design
675(36)
9.4.1 Verification of Footings
677(5)
9.4.2 Design of the Retaining Wall
682(7)
9.4.3 Design of the Corewall Foundation
689(6)
Appendix: Data on Soils and Foundations
695(16)
10 Prestressed Beams
711
10.1 Prestressing: Technological Aspects
711(17)
10.1.1 Prestressing Systems
715(4)
10.1.2 Instantaneous Losses
719(5)
10.1.3 Long-Term Losses
724(4)
10.2 Tendons Profile
728(12)
10.2.1 Loads Equivalent to the Tendon
729(3)
10.2.2 Available Moment and Limit Points
732(5)
10.2.3 Hyperstatic Beams
737(3)
10.3 Resistance Calculations
740(30)
10.3.1 Verification of Prestressed Concrete Sections
742(6)
10.3.2 Resistance Models of Prestressed Beams
748(10)
10.3.3 Anchorage and Diffusion of Precompression
758(12)
10.4 Design Examples
770
10.4.1 Pretensioned Concrete Element
770(15)
10.4.2 Post-tensioned Concrete Beam
785(18)
10.4.3 Prestressed Concrete Flanged Beam
803(19)
Appendix: Data on Prestressing
822
Erratum to: Reinforced Concrete Design to Eurocode 2 1(834)
References 835
Giandomenico Toniolo was full professor of Structural Analysis and Design at Politecnico di Milano, Italy. Besides his academic tasks and a professional engagement as structural designer, he carried out a long activity in regulations and standards in Italy and Europe, joining the National Commission for Technical Standards for Constructions and also several committees of the European Committee for Standardization CEN such as CEN/TC250/SC2 for Eurocode 2 (concrete structures), CEN/TC250/SC8 for Eurocode 8 (seismic code), CEN/TC229 for precast concrete products. Within this latter committee he chaired for many years the WG1 on precast concrete structural products. He has been the coordinator of important European research projects on seismic design of concrete precast structures. He has also developed an extensive editorial activity by authoring many scientific works and a number of university textbooks.

 

Marco di Prisco is full professorof Structural Analysis and Design at Politecnico di Milano, Italy. His research focuses on constitutive modelling for plain and fiber reinforced concrete, theoretical and experimental analysis on reinforcement-concrete interaction and mechanical behaviour of R/C and P/C structural elements. As member of SAG5 Technical Committee for New Model Code, he has been in charge of the chapters on FRC.