Atjaunināt sīkdatņu piekrišanu

Reinforcement Learning Aided Performance Optimization of Feedback Control Systems 1st ed. 2021 [Mīkstie vāki]

  • Formāts: Paperback / softback, 127 pages, height x width: 210x148 mm, weight: 454 g, 53 Illustrations, black and white; XIX, 127 p. 53 illus., 1 Paperback / softback
  • Izdošanas datums: 04-Mar-2021
  • Izdevniecība: Springer Vieweg
  • ISBN-10: 3658330333
  • ISBN-13: 9783658330330
  • Mīkstie vāki
  • Cena: 64,76 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 76,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 127 pages, height x width: 210x148 mm, weight: 454 g, 53 Illustrations, black and white; XIX, 127 p. 53 illus., 1 Paperback / softback
  • Izdošanas datums: 04-Mar-2021
  • Izdevniecība: Springer Vieweg
  • ISBN-10: 3658330333
  • ISBN-13: 9783658330330
Changsheng Hua proposes two approaches, an input/output recovery approach and a performance index-based approach for robustness and performance optimization of feedback control systems. For their data-driven implementation in deterministic and stochastic systems, the author develops Q-learning and natural actor-critic (NAC) methods, respectively. Their effectiveness has been demonstrated by an experimental study on a brushless direct current motor test rig.











The author:





Changsheng Hua received the Ph.D. degree at the Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany, in 2020. His research interests include model-based and data-driven fault diagnosis and fault-tolerant techniques.
Introduction.- The basics of feedback control systems.- Reinforcement
learning and feedback control.- Q-learning aided performance optimization of
deterministic systems.- NAC aided performance optimization of stochastic
systems.- Conclusion and future work.
Changsheng Hua received the Ph.D. degree at the Institute of Automatic Control and Complex Systems (AKS), University of Duisburg-Essen, Germany, in 2020. His research interests include model-based and data-driven fault diagnosis and fault-tolerant techniques.