Atjaunināt sīkdatņu piekrišanu

E-grāmata: Relativistic Astrophysics of the Transient Universe: Gravitation, Hydrodynamics and Radiation

(Massachusetts Institute of Technology), (Tel-Aviv University), Foreword by
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Jul-2012
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781139512244
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 103,49 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 05-Jul-2012
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781139512244
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In this decade, the transient universe will be mapped out in great detail by the emerging wide-field multiwavelength surveys, and neutrino and gravitational-wave detectors, promising to probe the astronomical and physical origin of the most extreme relativistic sources. This volume introduces the physical processes relevant to the source modeling of the transient universe. Ideal for graduate students and researchers in astrophysics, this book gives a unified treatment of relativistic flows associated with compact objects, their dissipation and emission in electromagnetic, hadronic and gravitational radiation. After introducing the source classes, the authors set out various mechanisms for creating magnetohydodynamic outflows in winds, jets and blast waves and their radiation properties. They then go on to discuss properties of accretion flows around rotating black holes and their gravitational wave emission from wave instabilites with implications for the emerging gravitational wave experiments. Graduate students and researchers can gain an understanding of data analysis for gravitational-wave data.

Recenzijas

'Van Putten and Levinson have made an enjoyable compilation of all those strange things that can happen in our Universe, not only providing detailed physical calculations to understand them, but also including descriptions of all the channels of radiation that we can use to receive as much information about them as we can.' Gerard 't Hooft, Utrecht University, from the Foreword

Papildus informācija

Unified treatment of electromagnetic, hadronic and gravitational radiation processes associated with relativistic outflows from compact objects.
Foreword xi
Preface xiii
Notation xvii
Quotation acknowledgements xix
1 A zoo of astrophysical transient sources
1(42)
1.1 Classification of transient sources
6(17)
1.2 On the origin of compact objects
23(9)
1.3 Emerging multimessenger observatories
32(7)
1.4 Exercises
39(4)
2 Electromagnetic radiation processes
43(41)
2.1 Definitions and notation
43(2)
2.2 Relativistic beaming and Doppler effect
45(4)
2.3 Some important invariants
49(1)
2.4 Transformation rules
50(1)
2.5 Synchrotron radiation
51(10)
2.6 Compton scattering
61(11)
2.7 Synchrotron self-Compton and the Compton catastrophe
72(3)
2.8 Creation and annihilation of electron-positron pairs
75(6)
2.9 Exercises
81(3)
3 Curved spacetime and gravitational waves
84(26)
3.1 Curved spacetime
84(4)
3.2 Redshift, geodetic and orbital precession
88(4)
3.3 Gravitational waves and hyperbolicity
92(5)
3.4 Frame dragging and Mach's principle
97(3)
3.5 Gravitational spin-orbit energy E = wJp
100(3)
3.6 Gravitational induction LwB
103(2)
3.7 Black hole evolution and the first law of thermodynamics
105(2)
3.8 Exercises
107(3)
4 Hadronic processes and neutrino emissions
110(13)
4.1 Ultra-high energy cosmic rays
110(3)
4.2 Confinement limit and constraints on the power of UHECR sources
113(1)
4.3 Neutrino production
114(1)
4.4 Inelastic nuclear collisions
115(2)
4.5 Photomeson interactions
117(2)
4.6 The GZK cut-off
119(1)
4.7 Relation between photon-photon and photopion opacities
120(1)
4.8 Exercises
121(2)
5 Relativistic fluid dynamics
123(12)
5.1 The fluid description
123(3)
5.2 Magnetohydrodynamics
126(2)
5.3 Magnetohydrodynamic waves
128(2)
5.4 Applications to colored MHD
130(3)
5.5 Exercises
133(2)
6 Winds and jets
135(18)
6.1 Hydrodynamic fireballs
135(3)
6.2 Confined transonic flows
138(3)
6.3 Flows subject to a gravitational force
141(1)
6.4 Magnetohydrodynamic flows
142(3)
6.5 Pulsar winds
145(2)
6.6 The force-free limit
147(1)
6.7 MHD in Kerr spacetime: magnetic extraction of black hole energy
148(3)
6.8 Exercises
151(2)
7 Relativistic shock waves
153(30)
7.1 Nonlinear steepening of relativistic disturbances
153(4)
7.2 Jump conditions
157(6)
7.3 Internal shocks and the efficiency problem
163(3)
7.4 Recollimation shocks
166(2)
7.5 Collisionless shocks
168(2)
7.6 Particle acceleration in collisionless shocks
170(5)
7.7 Radiation mediated shocks
175(6)
7.8 Exercises
181(2)
8 Relativistic blast waves
183(23)
8.1 Blast wave equations
183(2)
8.2 Impulsive adiabatic blast wave
185(4)
8.3 Impulsive radiative blast wave
189(1)
8.4 Emission from the forward shock
190(3)
8.5 Jets and breaks
193(2)
8.6 Early evolution: reverse shock formation
195(6)
8.7 Optical flashes
201(1)
8.8 Stability analysis
202(2)
8.9 Exercises
204(2)
9 Accretion disks and tori
206(21)
9.1 Basic principles and scaling relations
207(4)
9.2 Magneto-rotational instability
211(4)
9.3 A hydrodynamic instability in a torus
215(4)
9.4 Self-regulated instability around rapidly rotating black holes
219(2)
9.5 Torus magnetospheres around rapidly rotating black holes
221(2)
9.6 Exercises
223(4)
10 Entropic attraction in black hole binaries
227(25)
10.1 Entropic gravity
228(3)
10.2 Black holes and cosmic censorship
231(3)
10.3 Apparent horizon surfaces of black holes
234(2)
10.4 Gravitational attraction by Gibbs' principle
236(2)
10.5 Entropy jumps in mergers
238(3)
10.6 Newton's law from an adiabatic variational principle
241(4)
10.7 Newton's law for point particles
245(4)
10.8 Exercises
249(3)
11 Transient sources from rotating black holes
252(19)
11.1 Alfven waves in transient capillary jets
252(1)
11.2 UHECRs upstream of Alfven fronts
253(3)
11.3 Scaling relations for the spin down time
256(1)
11.4 Observing black hole spin down in long GRBs
257(6)
11.5 Scale-free behavior in GRB light curves from black hole spin down
263(1)
11.6 High frequency gravitational waves from stellar mass Kerr black holes
264(1)
11.7 Low frequency gravitational waves from SgrA*
265(1)
11.8 Unification of ultra-relativistic transient events
266(4)
11.9 Exercises
270(1)
12 Searching for long bursts in gravitational waves
271(16)
12.1 Introduction
271(1)
12.2 Template for long duration GWBs
272(2)
12.3 Time sliced matched filtering
274(4)
12.4 Outlook for detections
278(1)
12.5 Electromagnetic priors in gravitational-wave searches from supernovae and long GRBs
278(7)
12.6 Exercises
285(2)
13 Epilogue: the multimessenger Transient Universe
287(5)
13.1 Observational tests for multimessenger emissions from rotating black holes
289(1)
13.2 Outlook
290(2)
Appendix A Some properties of Kerr black holes 292(4)
Appendix B Cosmological event rates 296(4)
Appendix C Relaxation limited evaporation 300(5)
Appendix D Some units and constants 305(3)
References 308(16)
Index 324
Maurice H. P. M. Van Putten is a Professor in the School of Physics, Korea Institute for Advanced Study. His focus is on radiation processes around rotating black holes, gravitational radiation and ultra high energy cosmic rays. Amir Levinson is a Professor in the School of Physics and Astronomy, Tel Aviv University. His research interests include high-energy astrophysics, radiation processes in relativistic outflows, and plasma astrophysics.