|
1 An Introduction to Relativistic Quantum Chemistry |
|
|
1 | (62) |
|
|
|
2 | (10) |
|
|
3 | (1) |
|
|
4 | (1) |
|
1.1.3 Relativistic Q3uantum Field Theory for Electrons |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.1.5 Relativistic Quantum Chemistry |
|
|
7 | (5) |
|
|
12 | (1) |
|
1.2 From Three Basic Concepts to the Dirac Equation |
|
|
12 | (14) |
|
1.2.1 Principle of Invariance: The Lorentz Transformation |
|
|
12 | (2) |
|
1.2.2 Reelativity and the Natural Laws for Mechanics and Electrodynamics |
|
|
14 | (3) |
|
1.2.3 Relativistic and Non-relativistic Wave Equations |
|
|
17 | (1) |
|
1.2.4 The Natural Occurrence of Spin |
|
|
18 | (4) |
|
|
22 | (3) |
|
|
25 | (1) |
|
1.3 Dirac Solutions for Hydrogen and Other Atoms |
|
|
26 | (21) |
|
1.3..1 Relativistic Orbital Energies of the Simplified H-Atom Model |
|
|
27 | (1) |
|
1.3.2 Relativistici Atomic Spinors |
|
|
28 | (3) |
|
1.3.3 Relativistic Changes of Orbital Radii |
|
|
31 | (1) |
|
1.3.4 Paradoxical Relations |
|
|
31 | (3) |
|
1.3.5 Orpitals in Many-Electron Atoms: Small Angular Momenta |
|
|
34 | (6) |
|
1.3.6 Orbitals in Many Electron Atoms: Higher Angular Momenta |
|
|
40 | (2) |
|
1.3.7 Orbitals in Many-Electron Atoms: The p3/2 Valence Orbital |
|
|
42 | (1) |
|
1.3.8 The Relativistic Two-Electron Interaction |
|
|
43 | (2) |
|
1.3.9 Smaller Effects: Nuclear Size, QED and Weak Interaction |
|
|
45 | (2) |
|
1.4 Relativistic Changes of Molecules |
|
|
47 | (11) |
|
1.4.1 Always Two Different Relativistic Contributions |
|
|
49 | (2) |
|
1.4.2 Multiple Perturbation Theory |
|
|
51 | (2) |
|
1.4.3 Atomic Spionors and Molecular Quaternions |
|
|
53 | (2) |
|
1.4.4 The Periodic System of Elements and its Natural End |
|
|
55 | (3) |
|
|
58 | (1) |
|
|
58 | (5) |
|
2 Relativistic Effects and the Chemistry of the Heavier Main Group Elements |
|
|
63 | (36) |
|
|
|
63 | (3) |
|
2.1.1 Introduction to Relativistic Effects |
|
|
63 | (2) |
|
2.1.2 Intraatomic Changes |
|
|
65 | (1) |
|
|
66 | (1) |
|
2.2 Sixth Period Elements |
|
|
66 | (14) |
|
|
66 | (1) |
|
|
67 | (5) |
|
|
72 | (8) |
|
2.3 Seventh and Eighth Period Elements |
|
|
80 | (4) |
|
|
80 | (1) |
|
|
81 | (1) |
|
2.3.3 Superheavy Elements |
|
|
81 | (3) |
|
|
84 | (1) |
|
|
85 | (1) |
|
|
85 | (14) |
|
3 Why do we Need Relativistic Computational Methods? |
|
|
99 | (66) |
|
|
|
99 | (2) |
|
3.2 Energetic Sturcture and Spectroscopic Constants |
|
|
101 | (50) |
|
|
101 | (46) |
|
3.2.2 Polyatomic Molecules |
|
|
147 | (4) |
|
3.3 Electric Properties of Molecules |
|
|
151 | (7) |
|
3.3.1 Electric Properties of Interhalogens |
|
|
152 | (2) |
|
3.3.2 Electric Field Gradient and Quadrupole Moments |
|
|
154 | (4) |
|
|
158 | (1) |
|
|
159 | (3) |
|
|
162 | (3) |
|
4 Two-Component Relativistic Theories |
|
|
165 | (26) |
|
|
|
165 | (4) |
|
4.2 The Two-Component Methodology |
|
|
169 | (17) |
|
4.2.1 Elimination of the Small Component and the Pauli Expansion |
|
|
169 | (2) |
|
4.2.2 Regular Approximations (RA) |
|
|
171 | (1) |
|
4.2.3 Unitary Transformations of the Dirac Hamiltonian |
|
|
172 | (4) |
|
4.2.4 Infinite Order Two-Component (IOTC) Method |
|
|
176 | (10) |
|
|
186 | (2) |
|
4.4 Summary and Conclusion |
|
|
188 | (1) |
|
|
189 | (1) |
|
|
189 | (2) |
|
5 Relativistic Density Functional Theory |
|
|
191 | (24) |
|
|
5.1 Nonrelativistic Density Functional Theory Basics |
|
|
191 | (3) |
|
5.2 Relativistic Extension of DFT |
|
|
194 | (4) |
|
5.3 Relativistic Spin Density Functional Theory: Collinear and Noncollinear Approximation |
|
|
198 | (3) |
|
5.4 Relativistic Exchange-Correlation Functionals |
|
|
201 | (3) |
|
5.5 Dirac-Kohn-Sham Implemetations |
|
|
204 | (1) |
|
5.6 Quasirelativistic Methods |
|
|
205 | (4) |
|
5.7 The Presence, and the Future |
|
|
209 | (1) |
|
|
210 | (5) |
|
6 Relativistic Pseudopotentials |
|
|
215 | (64) |
|
|
|
|
215 | (2) |
|
6.2 Theoretical Considerations |
|
|
217 | (10) |
|
6.2.1 Phillips-Kleinman Equation |
|
|
217 | (3) |
|
6.2.2 Valence Electron Model Hamiltonian for an Atom |
|
|
220 | (1) |
|
6.2.3 Analytical Form of Non-relativistic Pseudopotentials |
|
|
221 | (2) |
|
6.2.4 Analytical Form of Scalar-Relativistic Pseudopotentials |
|
|
223 | (1) |
|
6.2.5 Analytical Form of Relativistic Pseudopotentials |
|
|
223 | (2) |
|
6.2.6 Molecular Pseudopotentials |
|
|
225 | (1) |
|
6.2.7 Core-Polarization Potentials |
|
|
225 | (2) |
|
6.2.8 Core-Core/Nucleus Repulsion Corrections |
|
|
227 | (1) |
|
6.3 Energy-Consistent Pseudopotentials |
|
|
227 | (10) |
|
6.3.1 Some Historical Aspects |
|
|
228 | (2) |
|
6.3.2 Method of Parametrization |
|
|
230 | (3) |
|
6.3.3 Availability of Pseudopotentials and Valence Basic Sets |
|
|
233 | (4) |
|
6.4 Other Effective Core Potential Methods |
|
|
237 | (7) |
|
6.4.1 Shape-Consistent Pseudopotentials |
|
|
237 | (2) |
|
6.4.2 Model Potential Method |
|
|
239 | (3) |
|
6.4.3 DFT-Based Effective Core Potentials |
|
|
242 | (2) |
|
|
244 | (25) |
|
6.5.1 Choice of the Reference Data |
|
|
245 | (2) |
|
|
247 | (5) |
|
6.5.3 Pseudopotential Adjustment |
|
|
252 | (9) |
|
6.5.4 Valence Basis Set Optimization |
|
|
261 | (1) |
|
6.5.5 Calibration and Application |
|
|
262 | (7) |
|
|
269 | (1) |
|
|
270 | (1) |
|
|
270 | (9) |
|
7 Four-Component Electronic Structure Methods |
|
|
279 | (72) |
|
|
|
|
279 | (1) |
|
7.2 Four-Component Methodology |
|
|
280 | (22) |
|
7.2.1 Dirac Equation - Historical Overview |
|
|
280 | (4) |
|
|
284 | (6) |
|
7.2.3 Particle-Particle Interaction and the No-Virtual-Pair approximation |
|
|
290 | (6) |
|
7.2.4 The NVPA Hamiltonian and Benchmarking of Four-Component Methods |
|
|
296 | (3) |
|
7.2.5 Standard Four-Component SCF Procedure for Atoms and Molecules |
|
|
299 | (3) |
|
7.3 The NVPA Multi-Root Multi-Reference Fock-Space Coupled Cluster Method |
|
|
302 | (9) |
|
|
302 | (3) |
|
7.3.2 The Intermediate Hamiltonian CC Method |
|
|
305 | (6) |
|
7.4 Applications: Heavy Elements |
|
|
311 | (9) |
|
7.4.1 When is an Atom "Heavy"? Ionization Potentials of Alkali Atoms |
|
|
312 | (1) |
|
7.4.2 Gold Atom: Local Maximum of Relativistic Effects |
|
|
313 | (1) |
|
7.4.3 The f2 Levels of Pr3+ : Importance of Dynamic Correlation |
|
|
314 | (1) |
|
7.4.4 Electron Affinities of Alkali Atoms - Accuracy at the 1 me V Level |
|
|
315 | (2) |
|
7.4.5 Electron Afinities in Group 13 |
|
|
317 | (1) |
|
7.4.6 Properties Other Than Energy: Nuclear Quadrupole Moments |
|
|
318 | (2) |
|
7.5 Applications: Superheavy Elements |
|
|
320 | (13) |
|
7.5.1 Ground State Configuration of Roentgenium (Elll) |
|
|
320 | (2) |
|
7.5.2 Ground State of Rutherfordium - Relativity vs. Correlation |
|
|
322 | (1) |
|
7.5.3 Eka-Lead (Element 114) - How Inert is it? |
|
|
323 | (4) |
|
7.5.4 Electronic Spectrum of Nobelium (Z = 102) and Lawrencium (Z = 103) |
|
|
327 | (3) |
|
7.5.5 Can a Rare Gas Atom Bind an Electron? |
|
|
330 | (1) |
|
7.5.6 Adsorption of Superheavy Atoms on Surfaces-Identifying and Characterizing New Elements |
|
|
331 | (2) |
|
7.6 Directions for Future Development |
|
|
333 | (8) |
|
7.6.1 Beyond Standard Four-Component Hartree-Fock Method: the QED-SCF Procedure |
|
|
333 | (2) |
|
7.6.2 Beyond NVPA: QED Many-Body Description and the Covariant Evolution Operator Approach |
|
|
335 | (3) |
|
7.6.3 Generalized Fock Space. Double Fock-Space CC |
|
|
338 | (3) |
|
7.7 Summary and Conclusion |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
342 | (9) |
|
8 The Effects of Relativity in Materials Science: Core Electron Spectra |
|
|
351 | (22) |
|
|
|
351 | (3) |
|
8.2 Computational Methods |
|
|
354 | (4) |
|
8.3 X-Ray Photoelectron Spectra |
|
|
358 | (5) |
|
8.4 X-Ray Absorption and Electron Energy Loss Spectra |
|
|
363 | (6) |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
370 | (3) |
|
9 Relativistic Symmetries in the Electronic Structure and Properties of Molecules |
|
|
373 | (34) |
|
|
|
|
|
375 | (1) |
|
9.2 Spin-Orbit Interaction and Double Group |
|
|
375 | (2) |
|
9.3 Double Groups and Relativistici Treatment of Molecules |
|
|
377 | (6) |
|
|
377 | (3) |
|
|
380 | (3) |
|
9.4 Applications of Double Group Symmetry in Calculating Molecular Properties |
|
|
383 | (12) |
|
|
383 | (6) |
|
|
389 | (6) |
|
|
395 | (5) |
|
|
395 | (2) |
|
|
397 | (1) |
|
9.5.3 CPT Theorem and Concept of Time Reversal |
|
|
397 | (1) |
|
9.5.4 Properties of T and its Implication in Molecular Properties |
|
|
398 | (1) |
|
9.5.5 Time Reversal in Group Theory |
|
|
399 | (1) |
|
|
400 | (1) |
|
|
401 | (1) |
|
|
401 | (2) |
|
|
403 | (4) |
|
10 Relativistic Sring-Based Electron Correlation Methods |
|
|
407 | (44) |
|
|
|
407 | (2) |
|
|
409 | (7) |
|
10.2.1 Time-Reversal Symmetry |
|
|
409 | (1) |
|
10.2.2 Kramers-Paired Spinors |
|
|
410 | (2) |
|
10.2.3 Integrals Over Kramers-Paired Spinors |
|
|
412 | (1) |
|
10.2.4 Double Group Symmetry |
|
|
413 | (1) |
|
10.2.5 Generalized Active Spaces |
|
|
414 | (2) |
|
10.3 Many-Particle Wavefunctions |
|
|
416 | (3) |
|
|
416 | (2) |
|
10.3.2 Relativistic Excitation Classes |
|
|
418 | (1) |
|
10.4 Wavefunction-Based Electron Correlation Methods |
|
|
419 | (19) |
|
10.4.1 Hamiltonian Operators |
|
|
419 | (4) |
|
10.4.2 Configuration Interaction |
|
|
423 | (6) |
|
10.4.3 Multi-Configuration SCF |
|
|
429 | (4) |
|
|
433 | (5) |
|
|
438 | (5) |
|
10.5.1 Tl2 Ground and Excited States |
|
|
438 | (2) |
|
|
440 | (1) |
|
|
441 | (2) |
|
|
443 | (1) |
|
|
444 | (1) |
|
|
445 | (6) |
|
11 Electronic Structure and Chemistry of the Heaviest Elements |
|
|
451 | (70) |
|
|
|
451 | (1) |
|
11.2 Production and Identification of the Heaviest Elements |
|
|
452 | (3) |
|
11.3 Experimentla Chemical Studies |
|
|
455 | (3) |
|
11.3.1 Gas-Phase Chemistry |
|
|
456 | (1) |
|
11.3.2 Liquid-Phase Chemistry |
|
|
457 | (1) |
|
|
458 | (3) |
|
11.4.1 Role of Theoretical Studies |
|
|
458 | (1) |
|
11.4.2 Relativistic and QED Effects on Atomic Electronic Shells of the Heaviest Elements |
|
|
458 | (3) |
|
11.5 Relativistic Quantum Chemical Methods |
|
|
461 | (6) |
|
|
462 | (1) |
|
11.5.2 Moledcular Methods |
|
|
463 | (4) |
|
11.6 Atomic Properties of the Heaviest Elements and Relativistic Effects |
|
|
467 | (6) |
|
11.6.1 Electronic Configurations |
|
|
467 | (1) |
|
11.6.2 Ionization Potentials, Electron Affinities and Stable Oxidation States |
|
|
468 | (3) |
|
11.6.3 Atomic/Ionic/Covalent Radii and Polarizability |
|
|
471 | (2) |
|
|
473 | (34) |
|
|
473 | (7) |
|
|
480 | (2) |
|
|
482 | (11) |
|
|
493 | (3) |
|
|
496 | (7) |
|
|
503 | (1) |
|
11.7.7 Elements with Z > 118 |
|
|
503 | (4) |
|
11.7.8 Summary of Predictions of Volatility of the Heaviest Elements and Their Compounds |
|
|
507 | (1) |
|
|
507 | (5) |
|
11.8.1 Redox Potentials and Reduction Experiments |
|
|
507 | (1) |
|
11.8.2 Complex Formation and Extraction by Liquid Chromatography |
|
|
508 | (3) |
|
11.8.3 Summary of Predictions of the Complex Formation |
|
|
511 | (1) |
|
|
512 | (1) |
|
|
513 | (1) |
|
|
513 | (8) |
|
12 Relativistic Effects on Magnetic Resonance Parameters and Other Properties of Inorganic Molecules and Metal Complexes |
|
|
521 | (78) |
|
|
|
521 | (2) |
|
12.2 Computing Molecular Properties |
|
|
523 | (37) |
|
12.2.1 Relativistic Methods in Quantum Chemistry |
|
|
525 | (7) |
|
12.2.2 Molecular Response Properties: A Brief Survey. Energy and Quasi-Energy Perturbations |
|
|
532 | (7) |
|
12.2.3 Resonance: Computation of Excitation Spectra |
|
|
539 | (3) |
|
12.2.4 Examples of Response Properties |
|
|
542 | (1) |
|
12.2.5 Perturbation Operators |
|
|
543 | (11) |
|
12.2.6 Hyperfine Operators: from Four to Two to One Component and the Nonrelativistic Limit |
|
|
554 | (3) |
|
12.2.7 Where in the Molecule Do the Properties "Originate" from? |
|
|
557 | (3) |
|
12.3 Benchmark Data and Case Studies |
|
|
560 | (30) |
|
|
561 | (12) |
|
12.3.2 Electron Paramagnetic Resonance |
|
|
573 | (7) |
|
12.3.3 Electric Field Gradients (EFGs) |
|
|
580 | (4) |
|
12.3.4 Dipole Moments, Polarizabilities, and Linear-Response Based Computations of Excitation Energies |
|
|
584 | (6) |
|
|
590 | (1) |
|
|
591 | (1) |
|
|
591 | (8) |
Index |
|
599 | |