Atjaunināt sīkdatņu piekrišanu

E-grāmata: Relativity Matters: From Einstein's EMC2 to Laser Particle Acceleration and Quark-Gluon Plasma

  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Mar-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319512310
  • Formāts - PDF+DRM
  • Cena: 83,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 13-Mar-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319512310

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Rafelski presents Special Relativity in a language deemed accessible to students without any topical preparation - avoiding the burden of geometry, tensor calculus, and space-time symmetries - and yet advancing in highly contemporary context all the way to research frontiers. Special Relativity is presented such that nothing remains a paradox or just apparent, but rather is explained.A text of similar character, content, and scope, has not been available before. This book describes Special Relativity when rigid material bodies are introduced describing the reality of body contraction; it shows the relevance of acceleration and the necessary evolution of the theoretical framework when acceleration is critical. This book also presents the evolving views of Einstein about the aether.In addition to a careful and elementary introduction to relativity complete with exercises, worked examples and many discussions, this volume connects to current research topics so that readers can ex

plore Special Relativity from the foundation to the frontier.

Preamble.- Space-Time, Light and the Aether.- Time Dilation, and Lorentz Contraction.- The Lorentz Transformation.- Measurement.- Time.- Mass, Energy, Momentum.- Collisions, Decays.- 4-Vectors and 4-Force.- Motion of Charged Particles.- Covariant Force and Field.- Dynamics of Fields and Particles.- Index.

Recenzijas

This monograph on special relativity (SR) is presented in a form accessible to a broad readership, from pre-university level to undergraduate and graduate students. At the same time, it will also be of great interest to professional physicists. (Torleif Ericson, cerncourier.com, February, 2018)

This book offers a valuable study of special relativity (SR) in a language accessible to students ... . An outstanding feature of the book is that it connects clarity in the fundamental questions about SR, and the developments of SR since 1905 to current research topics. This is an impressive book that should be beneficial for students, lecturers and explorers who are interested in SR. (Abraham A. Ungar, zbMATH 1375.83001, 2018)

Preamble vii
Contents xi
Guide to contents xvii
Many reasons to write this book xix
Special relativity matters xxiii
Acceleration frontier of physics xxiv
Frequently used abbreviations xxv
Part I Space-Time, Light and the Æther
1 Space-Time
3(18)
1.1 Time, a new 4th coordinate
3(4)
1.2 Measuring space and time
7(2)
1.3 Speed of light and the æther
9(12)
2 The Michelson-Morley Experiment
21(8)
2.1 Earth's motion and the æther
21(2)
2.2 Principle of relativity
23(4)
2.3 Cosmic microwave background frame of reference
27(2)
3 Material Bodies in Special Relativity
29(18)
3.1 Time dilation, body contraction
29(2)
3.2 Reality of the Lorentz-FitzGerald body contraction
31(8)
3.3 Path towards Lorentz coordinate transformations
39(2)
3.4 Highlights: how did relativity `happen'?
41(6)
Part II Time Dilation, and Lorentz-Fitzgerald Body Contraction
4 Time Dilation
47(14)
4.1 Proper time of a traveler
47(4)
4.2 Relativistic light-clock
51(10)
5 The Lorentz-FitzGerald Body Contraction
61(14)
5.1 Universality of time measurement
61(1)
5.2 Parallel light-clock
62(1)
5.3 Body contraction
63(12)
Part III The Lorentz Transformation
6 Relativistic Coordinate Transformation
75(14)
6.1 Derivation of the form of the Lorentz coordinate transformation
75(5)
6.2 Explicit form of the Lorentz coordinate transformation
80(5)
6.3 The nonrelativistic Galilean limit
85(1)
6.4 The inverse Lorentz coordinate transformation
86(3)
7 Properties of the Lorentz Coordinate Transformation
89(28)
7.1 Relativistic addition of velocities
89(9)
7.2 Aberration of light
98(6)
7.3 Invariance of proper time
104(2)
7.4 Two Lorentz coordinate transformations in sequence
106(2)
7.5 Rapidity
108(9)
Part IV Measurement
8 Body Properties and Lorentz Coordinate Transformations
117(4)
8.1 Graphic representation of LT
117(2)
8.2 Simultaneity and time dilation
119(2)
9 Different Methods of Measuring Spatial Separation
121(12)
9.1 Spatial separation measurement with the signal synchronized in the rest-frame of the observer S
122(1)
9.2 Spatial separation measurement with the signal synchronized in the rest-frame of a body So
123(2)
9.3 Spatial separation measurement due to illumination with light emitted in the rest-frame of the observer
125(3)
9.4 Train in the tunnel: is the tunnel contracted?
128(5)
10 The Bell Rockets
133(10)
10.1 Rockets connected by a thread
133(3)
10.2 The thread breaks
136(1)
10.3 Lorentz-FitzGerald body contraction measured
136(7)
Part V Time
11 The Light-Cone
143(6)
11.1 The future
143(3)
11.2 The past
146(3)
12 Causality, Twins
149(22)
12.1 Timelike and spacelike event separation
149(6)
12.2 Essay: Quantum entanglement and causality
155(5)
12.3 Time dilation revisited
160(3)
12.4 Spaceship travel in the Milky Way
163(8)
13 SR-Doppler Shift
171(12)
13.1 Introducing SR-Doppler shift
171(4)
13.2 Determination of SR-Doppler shift
175(8)
Part VI Mass, Energy, Momentum
14 Mass and Energy
183(8)
14.1 Proper body energy
183(3)
14.2 Relativistic energy of a moving body
186(1)
14.3 Mass of a body
187(4)
15 Particle Momentum
191(12)
15.1 Relation between energy and momentum
191(5)
15.2 Particle rapidity
196(7)
16 Generalized Mass-Energy Equivalence
203(12)
16.1 Where is energy coming from?
203(2)
16.2 Mass equivalence for kinetic energy in a gas
205(1)
16.3 Potential energy mass equivalence
206(2)
16.4 Atomic mass defect
208(1)
16.5 Rotational energy mass equivalence
208(2)
16.6 Chemical energy mass defect
210(1)
16.7 Nuclear mass defect
211(2)
16.8 Origin of energy
213(2)
17 Tests of Special Relativity
215(14)
17.1 Direct tests of special relativity
215(4)
17.2 The Michelson-Morley experiment today
219(1)
17.3 Tests of Lorentz coordinate transformation
220(3)
17.4 Measurement of time
223(6)
Part VII Collisions, Decays
18 A Preferred Frame of Reference
229(14)
18.1 The center of momentum frame (CM-frame)
229(2)
18.2 The LT to the CM-frame
231(3)
18.3 Decay of a body in the CM-frame
234(3)
18.4 Decay energy balance in CM-frame
237(1)
18.5 Decay of a body in flight
237(6)
19 Particle Reactions
243(32)
19.1 Elastic two-body reactions
243(2)
19.2 Compton scattering
245(4)
19.3 Elastic bounce from a moving wall
249(4)
19.4 Inelastic two-body reaction threshold
253(4)
19.5 Energy available in a collision
257(5)
19.6 Inelastic collision and particle production
262(4)
19.7 Relativistic rocket equation
266(9)
Part VIII 4-Vectors and 4-Force
20 4-Vectors in Minkowski Space
275(16)
20.1 Lorentz invariants and covariant equations
275(1)
20.2 The `position' 4-vector
276(1)
20.3 Metric in Minkowski space
277(3)
20.4 Lorentz boosts as generalized rotation
280(4)
20.5 Metric invariance
284(2)
20.6 Finding new 4-vectors and invariants
286(5)
21 4-Velocity and 4-Momentum
291(12)
21.1 4-velocity uμ
291(4)
21.2 Energy-momentum 4-vector
295(1)
21.3 Properties of Mandelstam variables
296(7)
22 Acceleration and Relativistic Mechanics
303(14)
22.1 Small acceleration
303(2)
22.2 Definition of 4-acceleration
305(3)
22.3 Relativistic form of Newton's 2nd Law
308(3)
22.4 The 4-force and work-energy theorem
311(6)
Part IX Motion of Charged Particles
23 The Lorentz Force
317(26)
23.1 Motion in magnetic and electric fields
317(8)
23.2 EM-potentials and homogeneous Maxwell equations
325(4)
23.3 The Lorentz force: from fields to potentials
329(1)
23.4 Lorentz force from variational principle
330(13)
24 Electrons Riding a Plane Wave
343(18)
24.1 Fields and potentials for a plane wave
343(4)
24.2 Role of conservation laws
347(5)
24.3 Surfing the plane wave
352(9)
Part X Covariant Force and Field
25 Covariant Formulation of EM-Force
361(16)
25.1 Lorentz force in terms of 4-potential
361(5)
25.2 Covariant variation-principle
366(8)
25.3 Covariant Hamiltonian for action principle
374(3)
26 Covariant Fields and Invariants
377(22)
26.1 EM-fields: relativistic form
377(2)
26.2 LT of electromagnetic fields and field invariants
379(5)
26.3 Constraints on field invariants
384(2)
26.4 Covariant form of the Lorentz force in terms of fields
386(4)
26.5 The Poynting force
390(9)
Part XI Dynamics of Fields and Particles
27 Variational Principle for EM-Fields
399(24)
27.1 Maxwell equations with sources
399(7)
27.2 Covariant gauge condition
406(6)
27.3 Homogeneous Maxwell equations
412(6)
27.4 Energy, momentum and mass of the EM-field
418(5)
28 EM-Field Inertia
423(14)
28.1 Field energy-momentum dynamics
423(4)
28.2 Mass of the electric field
427(5)
28.3 Limiting field/force electromagnetism
432(5)
29 Afterword: Acceleration
437(24)
29.1 Can there be acceleration in SR?
437(1)
29.2 Evidence for acceleration
438(3)
29.3 Strong acceleration
441(5)
29.4 EM radiation from an accelerated particle
446(3)
29.5 EM radiation reaction force
449(3)
29.6 Landau-Lifshitz radiation force model
452(4)
29.7 Caldirola radiation reaction model
456(1)
29.8 Unsolved radiation reaction
457(4)
Index 461
Johann Rafelski is a theoretical physicist working at The University of Arizona in Tucson, USA. Born in 1950 in Krakow, Poland, he received his Ph.D. with Walter Greiner at University Frankfurt, Germany in 1973. In 1977 Rafelski arrived at CERN-Geneva, where with Rolf Hagedorn he developed the search for quark-gluon plasma in relativistic heavy ion collision as a novel research domain. He invented and developed the strangeness quark flavor as the signature of quark-gluon plasma, advancing the discovery of this new phase of primordial matter. Professor Rafelski teaches Relativity, Quantum, Particle and Nuclear Physics; in addition to CERN and Arizona, he also has held professional appointments at the University of Pennsylvania in Philadelphia, Argonne National Laboratory in Chicago, the University of Frankfurt, the University of Cape Town, the University of Paris-Jussieu, and the Ecole Polytechnique. He has been a DFG Excellence Initiative Professor at Ludwig-Maximillian University Munich. In collaboration with researchers from the Ecole Polytechnique in Paris and ELI-Beamlines in Prague he is using ultra-intense lasers in nuclear and fundamental physics.

Prof. Rafelski is the editor of the open-access book: Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN - With a Tribute to Rolf Hagedorn (Springer, 2016)