Atjaunināt sīkdatņu piekrišanu

Relaxation in Optimization Theory and Variational Calculus 2nd Revised and Extended Edition [Hardback]

  • Formāts: Hardback, 601 pages, height x width: 240x170 mm, weight: 1124 g, 4 Tables, black and white; 52 Illustrations, black and white
  • Sērija : De Gruyter Series in Nonlinear Analysis & Applications
  • Izdošanas datums: 07-Dec-2020
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110589621
  • ISBN-13: 9783110589627
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 160,15 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 601 pages, height x width: 240x170 mm, weight: 1124 g, 4 Tables, black and white; 52 Illustrations, black and white
  • Sērija : De Gruyter Series in Nonlinear Analysis & Applications
  • Izdošanas datums: 07-Dec-2020
  • Izdevniecība: De Gruyter
  • ISBN-10: 3110589621
  • ISBN-13: 9783110589627
Citas grāmatas par šo tēmu:

The relaxation method has enjoyed an intensive development during many decades and this new edition of this comprehensive text reflects in particular the main achievements in the past 20 years. Moreover, many further improvements and extensions are included, both in the direction of optimal control and optimal design as well as in numerics and applications in materials science, along with an updated treatment of the abstract parts of the theory.

Preface xi
Preface to the second edition xviii
1 Background Generalities
1(80)
1.1 Order and topology
1(8)
1.2 Linear, nonlinear, and convex analysis
9(16)
1.2.a Linear functional analysis
10(4)
1.2.b Convex sets
14(4)
1.2.c Means of continuous functions
18(4)
1.2.d Solving abstract nonlinear equations
22(3)
1.3 Function and measure spaces
25(13)
1.3.a Bochner and Lebesgue spaces
26(4)
1.3.b Spaces of measures
30(3)
1.3.c Spaces of smooth functions and Sobolev spaces
33(5)
1.4 Some differential and integral equations
38(17)
1.4.a Ordinary differential and differential-algebraic equations
38(7)
1.4.b Partial differential equations of elliptic type
45(5)
1.4.C Partial differential equations of parabolic type
50(4)
1.4.d Integral equations of Hammerstein type
54(1)
1.5 Basics from optimization theory
55(26)
1.5.a Existence, stability, approximation
55(6)
1.5.b Optimality conditions of the 1st order
61(9)
1.5.c Multicriteria optimization
70(2)
1.5.d Non-cooperative game theory
72(9)
2 Theory of Convex Compactifications
81(36)
2.1 Convex compactifications
82(2)
2.2 Canonical form of convex compactifications
84(9)
2.3 Convex a-compactifkations--
93(10)
2.4 Approximation of convex compactifications
103(3)
2.5 Extension of mappings
106(5)
2.6 Inverse systems of convex compactifications
111(6)
3 Young Measures and Their Generalizations
117(126)
3.1 Classical Young measures
118(17)
3.1.a Basic scenario and results
118(13)
3.1.b Some illustrations
131(2)
3.1.C Some more results
133(2)
3.2 Various generalizations
135(31)
3.2.a Generalization by Fattorini
136(2)
3.2.b Generalization by Schonbek, Ball, Kinderlehrer and Pedregal
138(8)
3.2.c Generalization by DiPerna and Majda
146(17)
3.2.d Fonseca's extension of L1-spaces
163(3)
3.3 A class of convex compactifications of balls in Lp-spaces
166(25)
3.3.a Generalized Young functionals vpH,q(Ω S)
166(8)
3.3.b The composition h ·e;q
174(2)
3.3.c Some concrete examples
176(10)
3.3.d Coarse polynomial compactification by algebraic moments
186(2)
3.3.e Compatible systems of Young functionals on B(I;LP)
188(3)
3.4 A class of convex σ-compactifications of Lp-spaces
191(13)
3.5 Approximation theory
204(18)
3.5.a A general construction
205(6)
3.5.b An approximation over Ω
211(4)
3.5.c An approximation over 5
215(4)
3.5.d Higher-order constructions by quasi-interpolatlon
219(3)
3.6 Extensions of Nemytskii mappings
222(21)
3.6.a One-argument mappings: affine extensions
223(3)
3.6.b Two-argument mappings: semi-affine extensions
226(10)
3.6.c Two-argument mappings: bi-affine extensions
236(7)
4 Relaxation in Optimization Theory
243(139)
4.1 Abstract optimization problems
244(19)
4.2 Optimization problems on Lebesgue spaces
263(14)
4.3 Optimal control of finite-dimensional dynamical systems
277(48)
4.3.a Original problem
277(11)
4.3.b Relaxation scheme, correctness, well-posedness
288(7)
4.3.C Optimality conditions
295(10)
4.3.d Approximation theory
305(5)
4.3.e Illustrative computational simulations: oscillations
310(5)
4.3.f Illustrative computational simulations: oscillations and concentrations
315(3)
4.3.g Optimal control of differential-algebraic systems
318(7)
4.4 Elliptic optimal control problems
325(21)
4.4.a The original problem and its relaxation
325(8)
4.4.b Optimality conditions in semilinear case
333(6)
4.4.c Optimal control of Navier-Stokes' equations
339(3)
4.4.d Optimal material design of some stratified media
342(4)
4.5 Parabolic optimal control problems
346(27)
4.5.a Infinite-dimensional dynamical-system approach
348(7)
4.5.b An approach through parabolic partial differential equations
355(10)
4.5.C Optimal control of Navier-Stokes equations
365(8)
4.6 Optimal control of integral equations
373(9)
5 Relaxation in Variational Calculus: Scalar Case
382(53)
5.1 Convex compactifications of Sobolev spaces
383(11)
5.2 Relaxation of variational problems; p < 1
394(7)
5.3 Optimality conditions for relaxed problems
401(9)
5.4 Relaxation of variational problems; p = 1
410(6)
5.5 Convex approximations of relaxed problems
416(13)
5.6 Example: Mlcrostructure in ferromagnetic materials
429(6)
6 Relaxation In Variational Calculus: Vectorial Case
435(48)
6.1 Prerequisites around quasiconvexity
436(5)
6.2 Gradient generalized Young functionals
441(12)
6.3 Variational problems and their relaxation
453(5)
6.4 FEM-approximation
458(3)
6.5 Further approximation: an inner case
461(3)
6.6 Further approximation: an outer case
464(5)
6.7 Multiwell problems: illustrative calculations
469(14)
7 Relaxation in Game Theory
483(30)
7.1 Abstract game-theoretical problems
484(6)
7.2 Games on Lebesgue spaces
490(3)
7.3 Example: Games with dynamical systems
493(14)
7.4 Example: Elliptic games
507(6)
8 Relaxation in evolutionary problems
513(26)
8.1 Evolution on abstract convex compactifications
513(10)
8.1.a Rate-independent evolution
515(6)
8.1.b Quasistatic rate-dependent evolution
521(2)
8.2 Applications of relaxation in rate-independent evolution
523(9)
8.2.a Perfect plasticity at small strains
524(2)
8.2.b Evolution of microstructure in ferromagnetic materials
526(2)
8.2.c Evolution of microstructure in shape-memory materials
528(4)
8.3 Notes about measure-valued solutions to parabolic equations
532(7)
Bibliography 539(32)
List of Symbols 571(6)
Index 577
Tomį Roubiek, Charles University and Czech Academy of Sciences, Prague, Czech Republic.