Atjaunināt sīkdatņu piekrišanu

E-grāmata: Reliability in Biomechanics

  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Oct-2016
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119370826
  • Formāts - EPUB+DRM
  • Cena: 165,30 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 14-Oct-2016
  • Izdevniecība: ISTE Ltd and John Wiley & Sons Inc
  • Valoda: eng
  • ISBN-13: 9781119370826

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In this book, we present in detail several recent methodologies and algorithms that we have developed during the last fifteen years. The deterministic methods account for uncertainties through empirical safety factors,  which implies that the actual uncertainties in materials, geometry and loading are not truly considered. This problem becomes much more complicated when considering biomechanical applications where a number of uncertainties are encountered in the design of prosthesis systems. Therefore, the reliability and optimization coupling leads to reliable and optimal designs. 

The reliability and optimization procedures are classically carried out using deterministic constraints, but when considering the living tissues, the constraints become variable, that leads to a different design space at each iteration. There is a strong need to consider this complexity on the material property uncertainty. The mechanical properties change permanently in terms of the mechanical environment, ageing, disease, nutrition and other factors. This book implements improved numerical strategies and algorithms that can be applied only in biomechanical studies.

Preface ix
Introduction xi
Chapter 1 Basic Tools for Reliability Analysis
1(62)
1.1 Introduction
1(1)
1.2 Advantages of numerical simulation and optimization
2(1)
1.3 Numerical simulation by finite elements
3(3)
1.3.1 Use
3(1)
1.3.2 Principle
4(1)
1.3.3 General approach
5(1)
1.4 Optimization process
6(50)
1.4.1 Basic concepts
7(3)
1.4.2 Problem classification
10(12)
1.4.3 Optimization methods
22(1)
1.4.4 Unconstrained methods
23(20)
1.4.5 Constrained methods
43(13)
1.5 Sensitivity analysis
56(5)
1.5.1 Importance of sensitivity
56(1)
1.5.2 Sensitivity methods
57(4)
1.6 Conclusion
61(2)
Chapter 2 Reliability Concept
63(50)
2.1 Introduction
63(3)
2.1.1 Preamble
63(1)
2.1.2 Reliability history
63(2)
2.1.3 Reliability definition
65(1)
2.1.4 Importance of reliability
66(1)
2.2 Basic functions and concepts for reliability analysis
66(5)
2.2.1 Failure concept
67(1)
2.2.2 Uncertainty concept
67(1)
2.2.3 Random variables
68(1)
2.2.4 Probability density function
69(1)
2.2.5 Cumulative distribution function
69(1)
2.2.6 Reliability function
70(1)
2.3 System reliability
71(6)
2.3.1 Series conjunction
71(1)
2.3.2 Parallel conjunction
72(1)
2.3.3 Mixed conjunction
73(1)
2.3.4 Delta-star conjunction
74(3)
2.4 Statistical measures
77(4)
2.5 Probability distributions
81(16)
2.5.1 Uniform distribution
82(4)
2.5.2 Normal distribution
86(5)
2.5.3 Lognormal distribution
91(6)
2.6 Reliability analysis
97(15)
2.6.1 Definitions
97(8)
2.6.2 Algorithms
105(1)
2.6.3 Reliability analysis methods
106(4)
2.6.4 Optimality criteria
110(2)
2.7 Conclusion
112(1)
Chapter 3 Integration of Reliability Concept into Biomechanics
113(24)
3.1 Introduction
113(2)
3.2 Origin and categories of uncertainties
115(1)
3.3 Uncertainties in biomechanics
116(3)
3.3.1 Uncertainty in loading
117(1)
3.3.2 Uncertainty in geometry
118(1)
3.3.3 Uncertainty in materials
118(1)
3.4 Bone-related uncertainty
119(7)
3.4.1 Bone behavior law
120(5)
3.4.2 Contribution to the characterization of the bone's mechanical properties
125(1)
3.5 Bone developments and formulations
126(7)
3.5.1 Current formulation
126(1)
3.5.2 Generalized formulation
127(1)
3.5.3 Optimized formulation
128(2)
3.5.4 Extension to orthotropic behavior formulation
130(3)
3.6 Characterization by experimentation of the bone's mechanical properties
133(3)
3.6.1 Characterization by bending test
134(1)
3.6.2 Characterization by compression test
135(1)
3.7 Conclusion
136(1)
Chapter 4 Reliability Analysis of Orthopedic Prostheses
137(38)
4.1 Introduction to orthopedic prostheses
137(3)
4.1.1 History of prostheses
139(1)
4.1.2 Evolution of prostheses
139(1)
4.1.3 Examples of orthopedic prostheses
140(1)
4.2 Reliability analysis of the intervertebral disk
140(14)
4.2.1 Functional anatomy
140(1)
4.2.2 The lumbar functional spinal unit
141(4)
4.2.3 Intervertebral disk prosthesis
145(2)
4.2.4 Numerical application on the intervertebral disk
147(7)
4.3 Reliability analysis of the hip prosthesis
154(19)
4.3.1 Anatomy
154(4)
4.3.2 Presentation of the total hip prosthesis
158(3)
4.3.3 Numerical application of the hip prosthesis
161(3)
4.3.4 Boundary conditions
164(1)
4.3.5 Direct simulation
164(2)
4.3.6 Probabilistic sensitivity analysis
166(1)
4.3.7 Integration of reliability analysis
167(6)
4.4 Conclusion
173(2)
Chapter 5 Reliability Analysis of Orthodontic Prostheses
175(34)
5.1 Introduction to orthodontic prostheses
175(1)
5.2 Anatomy of the temporomandibular joint
176(7)
5.2.1 Articular bone regions and meniscus
177(2)
5.2.2 Ligaments
179(1)
5.2.3 Myology, elevator muscles and depressor muscles
179(4)
5.3 Numerical simulation of a non-fractured mandible
183(5)
5.3.1 Description of the studied mandible
183(2)
5.3.2 Numerical results
185(3)
5.4 Reliability analysis of the fixation system of the fractured mandible
188(20)
5.4.1 Description of a fractured mandible
188(1)
5.4.2 Fixation strategy using mini-plates
189(1)
5.4.3 Study of a homogeneous and isotropic structure
190(8)
5.4.4 Study of a composite and orthotropic structure
198(9)
5.4.5 Result discussion
207(1)
5.5 Conclusion
208(1)
Appendices 209(2)
Appendix 1 Matrix Calculation 211(6)
Appendix 2 ANSYS Code for the Disk Implant 217(4)
Appendix 3 ANSYS Code for the Stem Implant 221(14)
Appendix 4 Probability of Failure/Reliability Index 235(2)
Bibliography 237(8)
Index 245
Ghias KHARMANDA, Associate Professor (HDR Europ. Dr Eng). Dr. Abdelkhalak EL HAMI, Laboratoire d'Optimisation et Fiabilité en Mécanique des Structures, LOFIMS, INSA de Rouen, France;