Atjaunināt sīkdatņu piekrišanu

E-grāmata: Reliability, Maintainability and Risk: Practical Methods for Engineers

3.80/5 (15 ratings by Goodreads)
(Independent Consultant, Technis, Tonbridge, UK)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 15-Mar-2017
  • Izdevniecība: Butterworth-Heinemann Ltd
  • Valoda: eng
  • ISBN-13: 9780081020227
  • Formāts - EPUB+DRM
  • Cena: 80,19 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 15-Mar-2017
  • Izdevniecība: Butterworth-Heinemann Ltd
  • Valoda: eng
  • ISBN-13: 9780081020227

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Reliability, Maintainability and Risk 9th Edition has taught reliability and safety engineers techniques to minimize process design and operation defects and failures for 35 years. For beginners, the overview provided is valuable for avoiding pitfalls and as a reference for this complex and wide field. For experts in the field, well-described, realistic and illustrative examples and case studies gives new insight and assistance in your daily work. The author has used his 40 years of experience to create a comprehensive and detailed guide to the field whilst providing an excellent description of reliability and risk computation concepts.

This book is organized into five parts. Part 1 on reliability parameters and costs traces the history of reliability and safety technology and presents a cost-effective approach to quality, reliability, and safety. Part 2 deals with the interpretation of failure rates, while Part 3 focuses on the prediction of reliability and risk. Part 4 discusses design and assurance techniques; review and testing techniques; reliability growth modeling; field data collection and feedback; predicting and demonstrating repair times; quantified reliability maintenance; and systematic failures. Part 5 deals with legal, management and safety issues, such as project management, product liability, and safety legislation.

  • Additional chapter on helicopter and aviation safety record
  • Coverage of models for partial valve stroke test, fault tree logic and quantification difficulties
  • More detail on use of tools such as FMEDA and programming standards like MISRA C+

Papildus informācija

A practical guide to the techniques engineers need to understand and apply to reduce process design and operation defects and failures
Preface xix
Acknowledgements xxi
PART 1 Understanding Reliability Parameters and Costs
1(40)
Chapter 1 The History of Reliability and Safety Technology
3(12)
1.1 Failure Data
3(2)
1.2 Hazardous Failures
5(1)
1.3 Predicting Reliability and Risk
5(3)
1.4 Achieving Reliability and Safety-Integrity
8(2)
1.5 The RAMS-Cycle
10(2)
1.6 Contractual and Legal Pressures
12(1)
1.7 Reliability versus Functional Safety
13(2)
Chapter 2 Understanding Terms and Jargon
15(16)
2.1 Defining Failure and Failure Modes
15(2)
2.2 Failure Rate and Mean Time Between Failures
17(2)
2.2.1 The Observed Failure Rate
17(1)
2.2.2 The Observed Mean Time Between Failures
18(1)
2.2.3 The Observed Mean Time to Fail
18(1)
2.2.4 Mean Life
19(1)
2.3 Interrelationships of Terms
19(3)
2.3.1 Reliability and Failure Rate
19(2)
2.3.2 Reliability and Failure Rate as an Approximation
21(1)
2.3.3 Reliability and MTBF
22(1)
2.4 The Bathtub Distribution
22(2)
2.5 Down Time and Repair Time
24(2)
2.6 Availability, Unavailability and Probability of Failure on Demand
26(1)
2.7 Hazard and Risk-Related Terms
27(1)
2.8 Choosing the Appropriate Parameter
28(3)
Exercises
30(1)
Chapter 3 A Cost-Effective Approach to Quality, Reliability and Safety
31(10)
3.1 Reliability and Optimum Cost
31(4)
3.2 Costs and Safety
35(1)
3.2.1 The Need for Optimization
35(1)
3.2.2 Costs and Savings Involved with Safety Engineering
35(1)
3.3 The Cost of Quality
36(5)
PART 2 Interpreting Failure Rates
41(46)
Chapter 4 Realistic Failure Rates and Prediction Confidence
43(16)
4.1 Data Accuracy
43(2)
4.2 Sources of Data
45(5)
4.2.1 Electronic Failure Rates
46(2)
4.2.2 Other General Data Collections
48(2)
4.2.3 Some Older Sources
50(1)
4.3 Data Ranges
50(4)
4.3.1 Using the Ranges
52(2)
4.4 Confidence Limits of Prediction
54(2)
4.5 Manufacturers' Data (Warranty Claims)
56(1)
4.6 Overall Conclusions
57(2)
Chapter 5 Interpreting Data and Demonstrating Reliability
59(14)
5.1 The Four Cases
59(1)
5.2 Inference and Confidence Levels
59(2)
5.3 The Chi-Square Test
61(3)
5.4 Understanding the Method in More Detail
64(1)
5.5 Double-Sided Confidence Limits
65(1)
5.6 Reliability Demonstration
65(5)
5.7 Sequential Testing
70(1)
5.8 Setting Up Demonstration Tests
71(2)
Exercises
72(1)
Chapter 6 Variable Failure Rates and Probability Plotting
73(14)
6.1 The Weibull Distribution
73(2)
6.2 Using the Weibull Method
75(8)
6.2.1 Curve Fitting to Interpret Failure Data
75(2)
6.2.2 Manual Plotting
77(3)
6.2.3 Using the COMPARE Computer Tool
80(1)
6.2.4 Significance of the Result
81(2)
6.2.5 Optimum Preventive Replacement
83(1)
6.3 More Complex Cases of the Weibull Distribution
83(1)
6.4 Continuous Processes
84(3)
Exercises
85(2)
PART 3 Predicting Reliability and Risk
87(96)
Chapter 7 Basic Reliability Prediction Theory
89(16)
7.1 Why Predict RAMS?
89(1)
7.2 Probability Theory
90(3)
7.2.1 The Multiplication Rule
90(1)
7.2.2 The Addition Rule
90(1)
7.2.3 The Binomial Theorem
91(1)
7.2.4 Bayes Theorem
92(1)
7.3 Reliability of Series Systems
93(1)
7.4 Redundancy Rules
94(6)
7.4.1 General Types of Redundant Configuration
94(1)
7.4.2 Full Active Redundancy (Without Repair)
94(2)
7.4.3 Partial Active Redundancy (Without Repair)
96(1)
7.4.4 Conditional Active Redundancy
97(1)
7.4.5 Standby Redundancy
98(2)
7.4.6 Load Sharing
100(1)
7.5 General Features of Redundancy
100(5)
7.5.1 Incremental Improvement
100(2)
7.5.2 Further Comparisons of Redundancy
102(1)
7.5.3 Redundancy and Cost
103(1)
Exercises
103(2)
Chapter 8 Methods of Modeling
105(32)
8.1 Block Diagrams and Repairable Systems
105(9)
8.1.1 Reliability Block Diagrams
105(2)
8.1.2 Repairable Systems (Revealed Failures)
107(3)
8.1.3 Repairable Systems (Unrevealed Failures)
110(2)
8.1.4 Systems With Cold Standby Units and Repair
112(1)
8.1.5 Modeling Repairable Systems with Both Revealed and Unrevealed Failures
112(1)
8.1.6 Allowing for imperfect proof tests
113(1)
8.1.7 Conventions for Labeling `Dangerous', `Safe', Revealed and Unrevealed Failures
113(1)
8.2 Common Cause (Dependent) Failure
114(8)
8.2.1 What is CCF?
114(1)
8.2.2 Types of CCF Model
115(2)
8.2.3 The BETAPLUS Model
117(5)
8.3 Fault Tree Analysis
122(10)
8.3.1 The Fault Tree
122(1)
8.3.2 Calculations
123(3)
8.3.3 Cutsets
126(1)
8.3.4 Computer Tools
126(4)
8.3.5 Allowing for Common Cause Failure
130(1)
8.3.6 Fault Tree Analysis in Design
130(1)
8.3.7 A Cautionary Note (Illogical Trees)
130(2)
8.4 Event Tree Diagrams
132(5)
8.4.1 Why Use Event Trees?
132(1)
8.4.2 The Event Tree Model
132(2)
8.4.3 Quantification
134(1)
8.4.4 Differences
134(1)
8.4.5 Feedback Loops
135(2)
Chapter 9 Quantifying the Reliability Models
137(22)
9.1 The Reliability Prediction Method
137(2)
9.2 Allowing for Diagnostic Intervals
139(3)
9.2.1 Establishing Diagnostic Coverage
139(1)
9.2.2 Modelling Diagnostic Coverage
139(1)
9.2.3 Partial Stroke Testing
140(1)
9.2.4 Safe Failure Fraction
141(1)
9.3 FMEDA (Failure Mode and Diagnostic Analysis)
142(3)
9.4 Human Factors
145(7)
9.4.1 Background
145(1)
9.4.2 Models
145(1)
9.4.3 HEART (Human Error Assessment and Reduction Technique)
146(2)
9.4.4 THERP (Technique for Human Error Rate Prediction)
148(1)
9.4.5 TESEO (Empirical Technique to Estimate Operator Errors)
148(1)
9.4.6 Other Methods
149(1)
9.4.7 Human Error Probabilities
149(2)
9.4.8 Trends in Rigor of Assessment
151(1)
9.5 Simulation
152(6)
9.5.1 The Technique
152(2)
9.5.2 Some Packages
154(4)
9.6 Comparing Predictions with Targets
158(1)
Exercises
158(1)
Chapter 10 Risk Assessment (QRA)
159(24)
10.1 Frequency and Consequence
159(1)
10.2 Perception of Risk, ALARP and Cost per Life Saved
160(11)
10.2.1 Maximum Tolerable Risk (Individual Risk)
160(1)
10.2.2 Maximum Tolerable Failure Rate
161(2)
10.2.3 ALARP and Cost Per Life Saved
163(4)
10.2.4 Societal Risk
167(3)
10.2.5 Production/Damage Loss
170(1)
10.2.6 Environmental Loss
170(1)
10.3 Hazard Identification
171(5)
10.3.1 HAZOP
171(4)
10.3.2 HAZID
175(1)
10.3.3 HAZAN (Consequence Analysis)
175(1)
10.4 Factors to Quantify
176(7)
10.4.1 Reliability
176(1)
10.4.2 Lightning and Thunderstorms
176(2)
10.4.3 Aircraft Impact
178(1)
10.4.4 Earthquake
179(2)
10.4.5 Meteorological Factors
181(1)
10.4.6 Other Consequences
181(2)
PART 4 Achieving Reliability and Maintainability
183(108)
Chapter 11 Design and Assurance Techniques
185(12)
11.1 Specifying and Allocating the Requirement
185(1)
11.2 Stress Analysis
186(4)
11.3 Environmental Stress Protection
190(1)
11.4 Failure Mechanisms
191(2)
11.4.1 Types of Failure Mechanism
191(1)
11.4.2 Failures in Semiconductor Components
192(1)
11.4.3 Discrete Components
193(1)
11.5 Complexity and Parts
193(2)
11.5.1 Reduction of Complexity
193(1)
11.5.2 Part Selection
194(1)
11.5.3 Redundancy
195(1)
11.6 Burn-In and Screening
195(1)
11.7 Maintenance Strategies
196(1)
Chapter 12 Design Review, Test and Reliability Growth
197(12)
12.1 Review Techniques
197(1)
12.2 Categories of Testing
198(7)
12.2.1 Environmental Testing
199(1)
12.2.2 Marginal Testing
200(1)
12.2.3 High-Reliability Testing
201(1)
12.2.4 Testing for Packaging and Transport
201(1)
12.2.5 Multiparameter Testing
202(1)
12.2.6 Step-Stress Testing
203(2)
12.3 Reliability Growth Modeling
205(4)
12.3.1 The CUSUM Technique
205(1)
12.3.2 Duane Plots
206(2)
Exercises
208(1)
Chapter 13 Field Data Collection and Feedback
209(12)
13.1 Reasons for Data Collection
209(1)
13.2 Information and Difficulties
209(2)
13.3 Times to Failure
211(1)
13.4 Spreadsheets and Databases
212(2)
13.5 Best Practice and Recommendations
214(1)
13.6 Analysis and Presentation of Results
215(1)
13.7 Manufacturers' data
216(1)
13.8 Anecdotal Data
217(1)
13.9 Examples of Failure Report Forms
217(1)
13.10 No-Fault-Found (NFF)
217(4)
Chapter 14 Factors Influencing Down Time
221(24)
14.1 Key Design Areas
221(8)
14.1.1 Access
221(1)
14.1.2 Adjustment
221(1)
14.1.3 Built-in Test Equipment
222(1)
14.1.4 Circuit Layout and Hardware Partitioning
222(1)
14.1.5 Connections
223(1)
14.1.6 Displays and Indicators
224(1)
14.1.7 Handling, Human and Ergonomic Factors
225(1)
14.1.8 Identification
226(1)
14.1.9 Interchangeability
226(1)
14.1.10 Least Replaceable Assembly
227(1)
14.1.11 Mounting
227(1)
14.1.12 Component Part Selection
227(1)
14.1.13 Redundancy
228(1)
14.1.14 Safety
228(1)
14.1.15 Software
228(1)
14.1.16 Standardization
229(1)
14.1.17 Test Points
229(1)
14.2 Maintenance Strategies and Handbooks
229(16)
14.2.1 Organization of Maintenance Resources
230(1)
14.2.2 Maintenance Procedures
231(1)
14.2.3 Tools and Test Equipment
232(1)
14.2.4 Personnel Considerations
233(1)
14.2.5 Maintenance Manuals
234(2)
14.2.6 Spares Provisioning
236(6)
14.2.7 Logistics
242(1)
14.2.8 The User and the Designer
242(1)
14.2.9 Computer Aids to Maintenance
243(2)
Chapter 15 Predicting and Demonstrating Repair Times
245(14)
15.1 Prediction Methods
245(9)
15.1.1 US Military Handbook 472 -- Procedure 3
246(1)
15.1.2 Checklist -- Mil 472 Procedure 3
247(7)
15.1.3 Using a Weighted Sample
254(1)
15.2 Demonstration Plans
254(5)
15.2.1 Demonstration Risks
254(1)
15.2.2 US Military Standard 471A (1973)
255(2)
15.2.3 Data Collection
257(2)
Chapter 16 Quantified Reliability Centered Maintenance
259(10)
16.1 What is QRCM?
259(1)
16.2 The QRCM Decision Process
260(1)
16.3 Optimum Replacement (Discard)
260(3)
16.4 Optimum Spares
263(2)
16.5 Optimum Proof Test
265(1)
16.6 Condition Monitoring
266(3)
Chapter 17 Systematic Failures, Especially Software
269(22)
17.1 Random versus Systematic Failures
269(1)
17.2 Software-related Failures
270(3)
17.3 Software Failure Modeling
273(1)
17.4 Software Quality Assurance (Life Cycle Activities)
274(7)
17.4.1 Organization of Software QA
275(1)
17.4.2 Documentation Controls
275(3)
17.4.3 Programming (Coding) Standards
278(1)
17.4.4 Fault-Tolerant Design Features
279(1)
17.4.5 Reviews
280(1)
17.4.6 Integration and Test
280(1)
17.5 Modern/Formal Methods
281(4)
17.5.1 Requirements Specification and Design
282(1)
17.5.2 Static Analysis
283(2)
17.5.3 Test Beds
285(1)
17.6 Software Checklists
285(6)
17.6.1 Organization of Software QA
285(1)
17.6.2 Documentation Controls
286(1)
17.6.3 Programming Standards
286(1)
17.6.4 Design Features
287(1)
17.6.5 Code Inspections and Walkthroughs
288(1)
17.6.6 Integration and Test
289(2)
PART 5 Legal, Management and Safety Considerations
291(88)
Chapter 18 Project Management and Competence
293(10)
18.1 Setting Objectives and Making Specifications
293(1)
18.2 Planning, Feasibility and Allocation
294(1)
18.3 Program Activities
295(2)
18.4 Responsibilities and Competence
297(2)
18.5 Functional Safety Capability
299(1)
18.6 Standards and Guidance Documents
300(3)
Chapter 19 Contract Clauses and Their Pitfalls
303(14)
19.1 Essential Areas
303(5)
19.1.1 Definitions
304(1)
19.1.2 Environment
305(1)
19.1.3 Maintenance Support
305(1)
19.1.4 Demonstration and Prediction
306(1)
19.1.5 Liability
307(1)
19.2 Other Areas
308(2)
19.2.1 Reliability and Maintainability Program
308(1)
19.2.2 Reliability and Maintainability Analysis
308(1)
19.2.3 Storage
308(1)
19.2.4 Design Standards
309(1)
19.2.5 Safety-Related Equipment
309(1)
19.3 Pitfalls
310(1)
19.3.1 Definitions
310(1)
19.3.2 Repair Time
310(1)
19.3.3 Statistical Risks
310(1)
19.3.4 Quoted Specifications
310(1)
19.3.5 Environment
311(1)
19.3.6 Liability
311(1)
19.3.7 In Summary
311(1)
19.4 Penalties
311(3)
19.4.1 Apportionment of Costs During Guarantee
311(2)
19.4.2 Payment According to Down Time
313(1)
19.4.3 In Summary
313(1)
19.5 Subcontracted Reliability Assessments
314(3)
Chapter 20 Product Liability and Safety Legislation
317(10)
20.1 The General Situation
317(2)
20.1.1 Contract Law
317(1)
20.1.2 Common Law
318(1)
20.1.3 Statute Law
318(1)
20.1.4 In Summary
319(1)
20.2 Strict Liability
319(1)
20.2.1 Concept
319(1)
20.2.2 Defects
319(1)
20.3 The Consumer Protection Act 1987
320(1)
20.3.1 Background
320(1)
20.3.2 Provisions of the Act
320(1)
20.4 Health and Safety at Work Act 1974
321(2)
20.4.1 Scope
321(1)
20.4.2 Duties
321(1)
20.4.3 Concessions
321(1)
20.4.4 Responsibilities
321(1)
20.4.5 European Community Legislation
322(1)
20.4.6 Management of Health and Safety at Work Regulations 1992
322(1)
20.4.7 COSHH
322(1)
20.4.8 REACH
323(1)
20.5 Insurance and Product Recall
323(4)
20.5.1 The Effect of Product Liability Trends
323(1)
20.5.2 Some Critical Areas
324(1)
20.5.3 Areas of Cover
324(1)
20.5.4 Product Recall
324(3)
Chapter 21 Major Incident Legislation
327(12)
21.1 History of Major Incidents
327(1)
21.2 Development of major incident legislation
328(3)
21.3 Safety reports
331(3)
21.4 Offshore Safety Cases
334(2)
21.5 Problem Areas
336(1)
21.6 Rail
337(1)
21.7 Corporate Manslaughter and Corporate Homicide
337(2)
Chapter 22 Integrity of Safety-Related Systems
339(1)
22 A Safety-Related or Safety-Critical?
339(14)
22.2 Safety-Integrity Levels (SILs)
340(7)
22.2.1 Targets
340(4)
22.2.2 Assessing Equipment Against the Targets
344(3)
22.3 Programable electronic systems (PESs)
347(1)
22.4 Current guidance
347(3)
22.4.1 IEC International Standard 61508 (2010): Functional safety of electrical/electronic/programmable electronic safety--related systems: 7 parts
348(1)
22.4.2 IEC International Standard 61511: Functional safety -- safety instrumented systems for the process industry sector
348(1)
22.4.3 Institution of Gas Engineers and Managers IGEM/SR/15: Programmable equipment in safety-related applications -- 5th edition
348(1)
22.4.4 European Standard EN 50126: Railway applications -- the specification and demonstration of dependability, reliability, maintainability and safety (RAMS)
348(1)
22.4.5 UK Defence Standard 00-56 (Issue 3.0): Safety management requirements for defence systems
349(1)
22.4.6 RTCA DO-178B/(EUROCAE ED-12B): Software considerations in airborne systems and equipment certification
349(1)
22.4.7 Documents related to machinery
349(1)
22.4.8 Other industry sectors
350(1)
22.5 Framework for Certification
350(3)
22.5.1 Self-certification
350(1)
22.5.2 Third-party assessment
350(1)
22.5.3 Use of a Certifying Body
351(2)
Chapter 23 A Case Study: The Datamet Project
353(6)
23.1 Introduction
353(1)
23.2 The Datamet Concept
353(3)
23.3 The Contract
356(1)
23.4 Detailed Design
357(1)
23.5 Syndicate Study
358(1)
23.6 Hints
358(1)
Chapter 24 A Case Study: Gas Detection System
359(6)
24.1 Safety-Integrity Target
359(1)
24.2 Random Hardware Failures
360(2)
24.3 ALARP
362(1)
24.4 Architectures
363(1)
24.5 Life-Cycle Activities
364(1)
24.6 Functional Safety Capability
364(1)
Chapter 25 A Case Study: Pressure Control System
365(8)
25.1 The Unprotected System
365(1)
25.2 Protection System
366(1)
25.3 Assumptions
367(1)
25.4 Reliability Block Diagram
367(1)
25.5 Failure Rate Data
368(1)
25.6 Quantifying the Model
368(1)
25.7 Proposed Design and Maintenance Modifications
369(1)
25.8 Modeling Common Cause Failure (Pressure Transmitters)
369(1)
25.9 Quantifying the Revised Model
370(1)
25.10 ALARP
370(1)
25.11 Architectural Constraints
371(2)
Chapter 26 Helicopter Incidents and Risk Assessment
373(6)
26.1 Helicopter Incidents
373(2)
26.2 Risk Assessment -- Floatation Equipment
375(2)
26.2.1 Assessment of the Scenario
375(1)
26.2.2 ALARP
375(2)
26.3 Effect of Pilot Experience on Incident Rate
377(2)
Appendix 1 Glossary
379(10)
A1.1 Terms Related to Failure
379(2)
A1.1.1 Failure
379(1)
A1.1.2 Failure Mode
379(1)
A1.1.3 Failure Mechanism
379(1)
A1.1.4 Failure Rate
380(1)
A1.1.5 Mean Time Between Failures and Mean Time to Fail
380(1)
A1.1.6 Common Cause Failure
380(1)
A1.1.7 Common Mode Failure
380(1)
A1.1.8 Dangerous Failure
380(1)
A1.1.9 Safe Failure
380(1)
A1.2 Reliability Terms
381(1)
A1.2.1 Reliability
381(1)
A1.2.2 Redundancy
381(1)
A1.2.3 Diversity
381(1)
A1.2.4 Failure Mode and Effect Analysis
381(1)
A1.2.5 FMEDA (Failure Mode Effect and Diagnostic Analysis)
381(1)
A1.2.6 Fault Tree Analysis
381(1)
A1.2.7 Cause Consequence Analysis (Event Trees)
381(1)
A1.2.8 Reliability Growth
382(1)
A1.2.9 Reliability Centered Maintenance
382(1)
A1.3 Maintainability Terms
382(1)
A1.3.1 Maintainability
382(1)
A1.3.2 Mean Time to Repair (MTTR)
382(1)
A1.3.3 Repair Rate
382(1)
A1.3.4 Repair Time
382(1)
A1.3.5 Down Time
382(1)
A1.3.6 Corrective Maintenance
383(1)
A1.3.7 Preventive Maintenance
383(1)
A1.3.8 Least Replaceable Assembly (LRA)
383(1)
A1.3.9 Second-Line Maintenance
383(1)
A1.3.10 Maximum Repair Time
383(1)
A1.4 Terms Associated With Software
383(2)
A1.4.1 Software
383(1)
A1.4.2 Programable Device
383(1)
A1.4.3 High-Level Language
383(1)
A1.4.4 Assembler
384(1)
A1.4.5 Compiler
384(1)
A1.4.6 Diagnostic Software
384(1)
A1.4.7 Simulation
384(1)
A1.4.8 Emulation
384(1)
A1.4.9 Load Test
384(1)
A1.4.10 Functional Test
384(1)
A1.4.11 Software Error
384(1)
A1.4.12 Bit Error Rate
385(1)
A1.4.13 Automatic Test Equipment (ATE)
385(1)
A1.4.14 Data Corruption
385(1)
A1.5 Terms Related to Safety
385(2)
A1.5.1 Hazard
385(1)
A1.5.2 Major Hazard
385(1)
A1.5.3 Hazard Analysis
385(1)
A1.5.4 HAZOP
385(1)
A1.5.5 LOPA
385(1)
A1.5.6 Risk
386(1)
A1.5.7 Consequence Analysis
386(1)
A1.5.8 Safe Failure Fraction
386(1)
A1.5.9 Safety-Integrity
386(1)
A1.5.10 Safety-Integrity level
386(1)
A1.5.11 ALARP (As Low as Reasonably Practicable)
386(1)
A1.5.12 Cost Per Life Saved
386(1)
A1.5.13 GDF (Gross Disproportionality Factor)
386(1)
A1.5.14 FAFR (Fatal Accident Frequency)
387(1)
A1.6 General Terms
387(2)
A1.6.1 Availability (Steady State)
387(1)
A1.6.2 Unavailability (PFD)
387(1)
A1.6.3 Burn-In
387(1)
A1.6.4 Confidence Interval
387(1)
A1.6.5 Consumer's Risk
387(1)
A1.6.6 Derating
387(1)
A1.6.7 Ergonomics
387(1)
A1.6.8 Mean
388(1)
A1.6.9 Median
388(1)
A1.6.10 PFD
388(1)
A1.6.11 Producer's Risk
388(1)
A1.6.12 Quality
388(1)
A1.6.13 Random
388(1)
A1.6.14 FRACAS
388(1)
A1.6.15 RAMS
388(1)
Appendix 2 Percentage Points of the Chi-Square Distribution
389(8)
Appendix 3 Microelectronic Failure Rates
397(2)
Appendix 4 General Failure Rates
399(8)
Appendix 5 Failure Mode Percentages
407(4)
Appendix 6 Human Error Probabilities
411(4)
Appendix 7 Fatality Rates
415(2)
Appendix 8 Answers to Exercises
417(1)
Chapter 2
417(1)
Chapter 5
417(1)
Chapter 6
418(1)
Chapter 7
418(1)
Chapter 9
419(2)
Notes
420(1)
Chapter 12
421(1)
Chapter 25
422(5)
25.2 Protection System
422(1)
25.4 Reliability Block Diagram
422(1)
25.6 Quantifying the Model
422(1)
25.7 Revised diagrams
423(1)
25.9 Quantifying the revised Model
424(1)
25.10 ALARP
425(1)
25.11 Architectural Constraints
426(1)
Appendix 9 Bibliography
427(2)
Appendix 10 Scoring Criteria for BETAPLUS Common Cause Model
429(6)
A10.1 Checklist and Scoring for Equipment Containing Programable Electronics
429(2)
A10.2 Checklist and Scoring for Non-Programable Equipment
431(4)
For Programable Electronics
433(1)
For Sensors and Actuators
433(2)
Appendix 11 Example of HAZOF
435(4)
A11.1 Equipment Details
435(1)
A11.2 HAZOP Worksheets
435(1)
A11.3 Potential Consequences
435(4)
Worksheet
437(2)
Appendix 12 HAZID Checklist
439(4)
Appendix 13 Markov Analysis of Redundant Systems
443(6)
Appendix 14 Calculating the GDF
449(8)
Index 457
Dr. David J. Smith is the Proprietor of Technis Consultancy. He has written numerous books on Reliability and Safety over the last 40 years. His FARADIP database has become widely used, and his other software packages are also used throughout the profession. His PhD thesis was on the subject of reliability prediction and common cause failure. He contributed to the first drafting of IEC 61508 and chairs the IGEM panel which produces SR/15 (the gas industry safety related guidance). David is past President of the Safety and Reliability Society.