Atjaunināt sīkdatņu piekrišanu

E-grāmata: Reliable and Intelligent Optimization in Multi-Layered Cloud Computing Architectures

Edited by , Edited by , Edited by , Edited by (Vidyavardhaka College of Engineering, India), Edited by
  • Formāts: 224 pages
  • Izdošanas datums: 02-May-2024
  • Izdevniecība: Auerbach
  • Valoda: eng
  • ISBN-13: 9781040019085
  • Formāts - PDF+DRM
  • Cena: 70,12 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 224 pages
  • Izdošanas datums: 02-May-2024
  • Izdevniecība: Auerbach
  • Valoda: eng
  • ISBN-13: 9781040019085

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The book examines virtual machine placement techniques and task scheduling techniques that optimize resource utilization and minimize energy consumption of the cloud data center. The book also focuses on basic design principles and analysis of virtual machine placement techniques and tasks allocation techniques.



One of the major developments in the computing field has been cloud computing, which enables users to do complicated computations that local devices are unable to handle. The computing power and flexibility that have made the cloud so popular do not come without challenges. It is particularly challenging to decide which resources to use, even when they have the same configuration but different levels of performance because of the variable structure of the available resources. Cloud data centers can host millions of virtual machines, and where to locate these machines in the cloud is a difficult problem. Additionally, fulfilling optimization needs is a complex problem.

Reliable and Intelligent Optimization in Multi-Layered Cloud Computing Architectures examines ways to meet these challenges. It discusses virtual machine placement techniques and task scheduling techniques that optimize resource utilization and minimize energy consumption of cloud data centers. Placement techniques presented can provide an optimal solution to the optimization problem using multiple objectives. The book focuses on basic design principles and analysis of virtual machine placement techniques and task allocation techniques. It also looks at virtual machine placement techniques that can improve quality-of-service (QoS) in service-oriented architecture (SOA) computing. The aims of virtual machine placement include minimizing energy usage, network traffic, economical cost, maximizing performance, and maximizing resource utilization. Other highlights of the book include:

  • Improving QoS and resource efficiency
  • Fault-tolerant and reliable resource optimization models
  • A reactive fault tolerance method using checkpointing restart
  • Cost and network-aware metaheuristics.
  • Virtual machine scheduling and placement
  • Electricity consumption in cloud data centers

Written by leading experts and researchers, this book provides insights and techniques to those dedicated to improving cloud computing and its services.

1. Introduction to Optimization in Cloud Computing.
2. Improve QoS and Resource Efficiency in Cloud Using Neural Network.
3. Machine Learning-Based Optimization Approach to Analyze Text-Based Reviews for Improving Graduation Rates for Cloud-Based Architectures.
4. An Energy-Aware Optimization Model Using a Hybrid Approach.
5. Fault Tolerant and Reliable Resource Optimization Model for Cloud.
6. Asynchronous Checkpoint/Restart Fault Tolerant Model for Cloud.
7. Fault Prediction Models for Optimized Delivery of Cloud Services.
8. Secured Transactions in Storage System for Real-Time Blockchain Network Monitoring System.
9. Service Scaling and Cost- Prediction-Based Optimization in Cloud Computing.
10. Cost- and Network-Aware Metaheuristic Cloud Optimization.
11. The Role of SLA and Ethics in Cost Optimization for Cloud Computing.

Madhusudhan H. S. is an Associate Professor in the Department of Computer Science and Engineering at Vidyavardhaka College of Engineering, Mysuru, Karnataka, India.

Satish Kumar T. is an Associate Professor in the Department of Computer Science and Engineering at BMS Institute of Technology and Management, Bengaluru, Karnataka, India.

Punit Gupta is an Post Doc Fellow, School of Computer Science, University College Dublin, Dublin, Ireland.

Dinesh Kumar Saini is a Full Professor at the School of Computing and Information Technology, Manipal University Jaipur, Jaipur, Rajasthan, India.

Kashif Zia is a Research Associate at the MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, United Kingdom.