Atjaunināt sīkdatņu piekrišanu

Remote Sensing Applications in Environmental Research 2014 ed. [Hardback]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Hardback, 212 pages, height x width: 235x155 mm, weight: 4675 g, 66 Illustrations, color; 14 Illustrations, black and white; XVI, 212 p. 80 illus., 66 illus. in color., 1 Hardback
  • Sērija : Society of Earth Scientists Series
  • Izdošanas datums: 13-May-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 331905905X
  • ISBN-13: 9783319059051
  • Hardback
  • Cena: 91,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 107,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 212 pages, height x width: 235x155 mm, weight: 4675 g, 66 Illustrations, color; 14 Illustrations, black and white; XVI, 212 p. 80 illus., 66 illus. in color., 1 Hardback
  • Sērija : Society of Earth Scientists Series
  • Izdošanas datums: 13-May-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 331905905X
  • ISBN-13: 9783319059051
Remote Sensing Applications in Environmental Research is the basis for advanced Earth Observation (EO) datasets used in environmental monitoring and research. Now that there are a number of satellites in orbit, EO has become imperative in today’s sciences, weather and natural disaster prediction. This highly interdisciplinary reference work brings together diverse studies on remote sensing and GIS, from a theoretical background to its applications, represented through various case studies and the findings of new models. The book offers a comprehensive range of contributions by well-known scientists from around the world and opens a new window for students in presenting interdisciplinary and methodological resources on the latest research. It explores various key aspects and offers state-of-the-art research in a simplified form, describing remote sensing and GIS studies for those who are new to the field, as well as for established researchers.
Part I Classical Remote Sensing Applications
Remote Sensing-Based Determination of Conifer Needle Flushing Phenology over Boreal-Dominant Regions
3(14)
Navdeep S. Sekhon
Quazi K. Hassan
Mohammad M. Kamal
Information System for Integrated Watershed Management Using Remote Sensing and GIS
17(18)
P. D. Aher
J. Adinarayana
S. D. Gorantiwar
S. A. Sawant
Sensitivity Exploration of SimSphere Land Surface Model Towards Its Use for Operational Products Development from Earth Observation Data
35(22)
George P. Petropoulos
Hywel M. Griffiths
Pavlos Ioannou-Katidis
Prashant K. Srivastava
Remote Estimation of Land Surface Temperature for Different LULC Features of a Moist Deciduous Tropical Forest Region
57(12)
Suman Sinha
Prem Chandra Pandey
Laxmi Kant Sharma
Mahendra Singh Nathawat
Pavan Kumar
Shruti Kanga
Geospatial Strategy for Estimation of Soil Organic Carbon in Tropical Wildlife Reserve
69(18)
Gargi Gupta
Jyoti Singh
Prem Chandra Pandey
Vandana Tomar
Meenu Rani
Pavan Kumar
Part II Advanced Remote Sensing Applications
A Comparative Assessment Between the Application of Fuzzy Unordered Rules Induction Algorithm and J48 Decision Tree Models in Spatial Prediction of Shallow Landslides at Lang Son City, Vietnam
87(26)
Dieu Tien Bui
Biswajeet Pradhan
Inge Revhaug
Chuyen Trung Tran
Application of Geo-Spatial Technique for Flood Inundation Mapping of Low Lying Areas
113(18)
Dhruvesh P. Patel
Prashant K. Srivastava
Spatial Variations in Vegetation Fires and Carbon Monoxide Concentrations in South Asia
131(20)
Krishna Prasad Vadrevu
Kristofer Lasko
Chris Justice
Land Use Fragmentation Analysis Using Remote Sensing and Fragstats
151(26)
Sudhir Kumar Singh
Avinash Chandra Pandey
Dharamveer Singh
Chlorophyll Retrieval Using Ground Based Hyperspectral Data from a Tropical Area of India Using Regression Algorithms
177(18)
M. Gupta
Prashant K. Srivastava
S. Mukherjee
G. Sandhya Kiran
Remote Sensing Based Identification of Painted Rock Shelter Sites: Appraisal Using Advanced Wide Field Sensor, Neural Network and Field Observations
195
Ruman Banerjee
Prashant K. Srivastava