Atjaunināt sīkdatņu piekrišanu

E-grāmata: Remote Sensing and Atmospheric Ozone: Human Activities versus Natural Variability

  • Formāts: PDF+DRM
  • Sērija : Environmental Sciences
  • Izdošanas datums: 21-Jun-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642103346
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 213,54 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Environmental Sciences
  • Izdošanas datums: 21-Jun-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642103346
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The destruction of the ozone layer, together with global warming, is one of the hot environmental topics of today. This book examines the effect of human activities on atmospheric ozone, namely the increase of tropospheric ozone and the general diminution of stratospheric ozone and the production of the Antarctic ozone hole. Also discussed is the role of remote sensing techniques in the understanding of the effects of human activities on atmospheric ozone as well as in the development of social and political awareness of the damage to the ozone layer by man-made chemicals, principally CFCs. This led to the formulation and ratification in 1989 of the Montreal Protocol on controlling/banning the manufacture and use of chemicals that damage the ozone layer.Since then, remote sensing has played a key role in monitoring atmospheric ozone concentration and determining the success of the Montreal Protocol in protecting the ozone layer from further damage. In this book, the renowned authors discuss the sophisticated instruments that have been launched into space to study not only ozone but also other trace gases in the atmosphere, some of which play a key role in the generation and destruction of ozone in the atmosphere. Professors Cracknell and Varotsos also examine the satellite-flown instruments which are involved in monitoring the absorption of solar ultraviolet light in the atmosphere in relation both to the generation and destruction of ozone and consequently to human health.This scholarly book, written by the foremost experts in the field, looks at remote sensing and its employment in the various aspects of ozone science. It is widely acknowledged that global warming, due to anthropogenic greenhouse gases emissions, represents a threat to the sustainability of human life on Earth. However, many other threats are potentially just as serious, including atmospheric pollution, ozone depletion, water pollution, the degradation of agricultural land, deforestation, the depletion of the world's mineral resources and population growth.

This book examines the effect of human activities on atmospheric ozone. It details the role of remote sensing techniques in understanding the effects of human activities on atmospheric ozone as well as in the development of social and political awareness.
Preface xi
List of figures
xv
List of tables
xxiii
List of abbreviations and acronyms
xxvii
1 The traditional measurement of ozone concentration in the atmosphere
1(78)
1.1 Introduction
1(4)
1.1.1 Observations of the total ozone column
4(1)
1.2 Ground-based instrumentation for TOC observations
5(29)
1.2.1 The Dobson ozone spectrophotometer
7(3)
1.2.2 Intercomparison of Dobson spectrophotometers
10(9)
1.2.3 Interference of SO2 and NO2 in Dobson TOC measurements
19(5)
1.2.4 Influence of stray light on Dobson TOC measurements
24(10)
1.3 Brewer Spectrophotometer
34(3)
1.4 Filter ozonometers M-83/124/134
37(2)
1.5 Secondary ground-based instrumentation for TOC observations
39(11)
1.5.1 System for Analysis of Observation at Zenith (SAOZ)
42(1)
1.5.2 MICROTOPS II (Total Ozone Portable Spectrometer)
42(1)
1.5.3 High-Resolution Visible/Ultraviolet Absorption Spectros-copy
43(1)
1.5.4 Fourier transform spectrometer (FTS)
43(3)
1.5.5 System for the Monitoring of Stratospheric Compounds (SYMOCS)
46(1)
1.5.6 Star Pointing Spectrometer (SPS)
46(1)
1.5.7 MDR-23 (a Russian commercial device)
46(1)
1.5.8 Scanning spectrometer (EVA)
47(1)
1.5.9 Solar IR spectroradiometer
47(1)
1.5.10 Ground-based UV radiometer (GUV)
47(1)
1.5.11 Spectrometer-Ozonometer PION
48(1)
1.5.12 SPectrometer for Atmospheric TRAcers Monitoring (SPATRAM)
48(2)
1.6 Observations of ozone vertical profile (OVP)
50(11)
1.6.1 Primary ground-based instrumentation for OVP observations
50(1)
1.6.2 Dobson Umkchr measurements and inversion
51(3)
1.6.3 Brewer Umkchr measurements
54(1)
1.6.4 Secondary ground-based instrumentation for OVP observations
55(1)
1.6.5 Lidar
55(1)
1.6.6 Microwave radiometry
56(1)
1.6.7 Ground-based Millimeter wave Ozone Spectrometer (GROMOS)
57(1)
1.6.8 Stratospheric Sounding by Infrared Heterodyne Spectroscopy (SIRHS)
57(1)
1.6.9 Ground-based microwave radiometers
58(1)
1.6.10 Ground-based infrared solar spectroscopy
59(1)
1.6.11 Stratospheric Ozone Monitoring Radiometer (SOMORA)
59(2)
1.7 Airborne instrumentation for OVP observations
61(16)
1.7.1 Electrochemical ozonesondes
61(3)
1.7.2 Optical ozonesondes
64(3)
1.7.3 Other balloon instrumentation
67(4)
1.7.4 Aircraft instrumentation
71(6)
1.8 Surface ozone measurements
77(2)
1.8.1 Chemiluminescenee method
77(1)
1.8.2 Electrochemical potassium iodide method
77(1)
1.8.3 UV absorption method
77(2)
2 Satellite systems for studies of atmospheric ozone
79(70)
2.1 Satellite remote sounding of TOC
82(1)
2.2 Direct absorption measuring instruments
83(3)
2.2.1 TIROS Operational Vertical Sounder (TOVS); GOES
83(2)
2.2.2 Laser Heterodyne Spectrometer (LHS)/Tunablc Diode LHS (TDLHS)
85(1)
2.2.3 OZON-MIR
86(1)
2.3 Indirect absorption measuring instruments
86(16)
2.3.1 Total Ozone Mapping Spectrometer (TOMS)
86(4)
2.3.2 Ozone Monitoring Instrument (OMI)
90(3)
2.3.3 Advanced Earth Observing Satellite (ADEOS I, II)
93(1)
2.3.4 Solar Backscattered Ultraviolet Radiometer (SBUV)
93(3)
2.3.5 Global Ozone Monitoring Experiment (GOME)
96(2)
2.3.6 ESA ENVISAT, GOMOS
98(1)
2.3.7 The Ozone Mapping and Profiler Suite (OMPS) and the NPOESS
99(2)
2.3.8 Ozone Dynamics Ultraviolet Spectrometer (ODUS)
101(1)
2.3.9 Ozone Layer Monitoring Experiment (OLME)
101(1)
2.3.10 Interferometric Monitor for Greenhouse Gases (IMG)
101(1)
2.3.11 Infrared Atmospheric Sounding Interferometer
102(1)
2.4 Observed variability in total ozone column
102(4)
2.4.1 Latitudinal variation of TOC
102(4)
2.4.2 Longitudinal variation of TOC
106(1)
2.5 Satellite instrumentation for OVP observations
106(24)
2.5.1 Direct-absorption measuring instruments
107(9)
2.5.2 Scattering-measuring instruments
116(2)
2.5.3 Emission-measuring instruments
118(12)
2.5.4 Summary of ozone-monitoring satellites
130(1)
2.6 Observed variability in vertical ozone distribution
130(19)
2.6.1 EASOE
141(1)
2.6.2 SESAME
142(1)
2.6.3 THESEO
142(1)
2.6.4 SOLVE
142(1)
2.6.5 ORACLE-O3
143(1)
2.6.6 SCOUT-O3
144(1)
2.6.7 Match
144(1)
2.6.8 ARC_IONS
145(4)
3 Intercomparisons between various atmospheric ozone datasets
149(106)
3.1 Introduction
149(3)
3.2 Total ozone measurements over Athens: intercomparison between Dobson, TOMS (version 7), SBUV, and other satellite measurements
152(9)
3.3 Geophysical validation of MIPAS-ENVISAT operational ozone data
161(29)
3.3.1 Introduction to MIPAS
161(2)
3.3.2 MIPAS ozone data
163(1)
3.3.3 Comparison of MIPAS data with WMO/GAW ground-based measurements
164(26)
3.4 Comparison of MIPAS data with stratospheric balloon and aircraft measurements
190(18)
3.4.1 MIPAS-B2
190(3)
3.4.2 FIRS-2 and IBEX
193(5)
3.4.3 SPIRALE
198(2)
3.4.4 MIPAS-STR, SAFIRE-A, and FOZAN on board the M-55 Geophysica aircraft
200(7)
3.4.5 ASUR
207(1)
3.5 Comparison with satellite measurements
208(26)
3.5.1 Comparison of MIPAS data with SAGE II O3 profiles
211(2)
3.5.2 Comparison with POAM III O3 profiles
213(3)
3.5.3 Comparison with Odin-SMR O3 profiles
216(4)
3.5.4 Comparison with ACE-FTS O3 profiles
220(3)
3.5.5 Comparison with HALOE O3 profiles
223(6)
3.5.6 Comparison with GOME O3 profiles
229(2)
3.5.7 Comparison with SCIAMACHY and GOMOS
231(3)
3.6 Comparison of MIPAS data with ECMWF assimilated fields
234(2)
3.7 Summary of MIPAS comparisons
236(8)
3.8 Other intercomparisons between various ozone-monitoring systems
244(11)
3.8.1 TOMS, GOME, GOMOS, and SCIAMACHY data
245(3)
3.8.2 MLS data
248(1)
3.8.3 SAGE data
249(1)
3.8.4 TES data
250(1)
3.8.5 ACE and IASI data
250(4)
3.8.6 Ozonesonde intercomparisons
254(1)
4 The dynamics of atmospheric ozone
255(84)
4.1 Total ozone trends
257(16)
4.2 Ozone vertical profile variability
273(14)
4.3 General features of ozone global distribution
287(19)
4.3.1 Stratosphere troposphere exchange
293(5)
4.3.2 Low-ozone pockets
298(8)
4.4 The non-linear nature of ozone variability; detrended fluctuation analysis (DFA)
306(16)
4.4.1 Long-memory processes in global ozone and temperature variations
307(7)
4.4.2 Long-term memory dynamics of total ozone content
314(3)
4.4.3 Scaling behavior of the global tropopause
317(4)
4.4.4 Scaling properties of air pollution at the surface; surface ozone (SOZ)
321(1)
4.5 Impacts of the solar eclipse of March 29, 2006 on surface ozone and related air pollutants
322(5)
4.6 Long-term coupling between TOC and tropopause properties
327(12)
4.6.1 Occurrence frequency of tropopause height
329(4)
4.6.2 Association between tropopause properties and TOC
333(3)
4.6.3 The tropopause; summary
336(3)
5 The Montreal Protocol
339(40)
5.1 Introduction
339(1)
5.2 The proposition by Molina and Rowland of human releases of CFCs being responsible for ozone depiction
340(4)
5.3 The science from 1974 to 1985
344(7)
5.4 The Ozone Hole
351(7)
5.5 The role of remote sensing in the lead-up to the Montreal Protocol
358(1)
5.6 The NOZE and AAOE expeditions
358(5)
5.7 Theories of the Ozone Hole
363(3)
5.8 Diplomacy, 1974-1989; formulation and ratification of the Montreal Protocol
366(2)
5.9 Reasons for the success in reaching international agreement in Montreal
368(4)
5.10 Ratification of the Montreal Protocol
372(7)
6 The study of atmospheric ozone since 1987
379(106)
6.1 Introduction
379(1)
6.2 The reduction of ozone-destroying chemicals in the atmosphere
379(9)
6.2.1 Ozone depletion potential (ODP)
382(3)
6.2.2 Equivalent Effective Stratospheric Chlorine (EESC)
385(3)
6.3 Ground-based and ozonesonde data on ozone depletion
388(2)
6.4 Piecewise linear trends in ozone depletion
390(16)
6.5 Recovery of the ozone layer; the polar regions
406(42)
6.5.1 Sudden stratospheric warmings
415(2)
6.5.2 Observation of sudden stratospheric warmings detected in deep underground muon data
417(3)
6.5.3 The role of the diffusion of gases in ice or an amorphous binary mixture in the polar stratosphere and the upper troposphere
420(5)
6.5.4 Experimental studies of the Antarctic ozone hole and ozone loss in the Arctic
425(16)
6.5.5 Antarctic ozone hole predictability; use of natural time series
441(7)
6.6 Long-term monitoring of the ozone layer
448(30)
6.6.1 Measurement of TOC and the OVP
452(2)
6.6.2 The use of models to predict ozone concentration
454(15)
6.6.3 Ozonesonde networks
469(5)
6.6.4 Trends in TOC and tropopause properties
474(4)
6.7 Scientific assessment of ozone depletion 2010
478(7)
7 Atmospheric ozone and climate
485(74)
7.1 Introduction
485(7)
7.2 Radiative-forcing calculations
492(25)
7.2.1 Estimates of changes in RF from pre-industrial times to the present
492(5)
7.2.2 Detailed studies of changes in RF in recent decades
497(18)
7.2.3 Contribution of the transport sector
515(2)
7.3 Ozone-induced climatic impacts
517(27)
7.3.1 The health impacts of changes in ozone concentration
543(1)
7.4 Conclusions on tropo-stratospheric variability
544(3)
7.4.1 Stratospheric ozone dynamics and its determining factors
545(1)
7.4.2 Tropospheric processes
546(1)
7.5 New climate research aspects deduced from global ozone dynamics research and remote sensing
547(7)
7.5.1 Climate modeling and atmospheric ozone
547(2)
7.5.2 Role of phase transitions in climate system dynamics
549(1)
7.5.3 Nambu dynamics and ozone climate modeling
550(1)
7.5.4 Dissipation-induced instabilities in ozone and climate fields
551(2)
7.5.5 Deterministic, chaotic, or stochastic ozone climate time series
553(1)
7.6 WMO/UNEP Scientific Assessment 2010
554(5)
References and bibliography 559(94)
Index 653