Atjaunināt sīkdatņu piekrišanu

Remote Sensing and Climate Change: The Role of Earth Observation Edition. ed. [Hardback]

  • Formāts: Hardback, 333 pages, height: 246 mm, Illustrations (some col.), maps (some col.)
  • Sērija : Springer Praxis Books / Geophysical Sciences
  • Izdošanas datums: 02-Apr-2001
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1852333219
  • ISBN-13: 9781852333218
  • Hardback
  • Cena: 149,51 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 175,90 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 333 pages, height: 246 mm, Illustrations (some col.), maps (some col.)
  • Sērija : Springer Praxis Books / Geophysical Sciences
  • Izdošanas datums: 02-Apr-2001
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1852333219
  • ISBN-13: 9781852333218
Much of the evidence related to climate change is concerned with data from particular locations or small areas. However data captured from remote sensing systems in space and covering the whole earth can yield evidence of climate change from extensive areas. In this book international experts consider the potential value of such data addressing the problem of calibration to ensure that detected changes do not arise from drift in the calibration of the instrument or changes in the calibration coefficients from one model to another in a series of nominally identical modes. There will be some consideration of large international projects devoted to the study of cloud climatology from the archived meteorological satellite data and also of vegetation indices derived from the global sets, principally the AVHRR. The related question of the use of archived satellite data to improve the specification of surface conditions, particularly of vegetated land areas in global climate models will also be considered. This book ends with a discussion of the future role of satellite data, including data from new high-resolution instruments that are expected to be launched in the near future.
Preface xi Abbreviations and satellites xv List of participants xxv Background 1(36) A. P. Cracknell Introduction 1(3) Why is climatology important? 1(1) Global warming 2(1) The importance of climate studies 3(1) Scale in time and space 4(1) Causes of climate change 4(4) Events that occur outside the Earth 5(1) Natural events on the Earth 5(1) Human activities 5(3) Principles of climate modelling 8(9) Weather forecast models 9(1) Climate forecasting and chaos theory 10(1) Climate forecast models 11(5) Feedback mechanisms 16(1) Use of general circulation models 17(11) Introduction 17(2) Model outputs 19(1) IPCC reports 20(8) Predicted consequences of climate change 28(8) Sea-level rise 29(4) Freshwater resources 33(1) Desertification 33(1) Agriculture and food supply 34(1) Natural ecosystems 35(1) Impact on human health 35(1) Costs 35(1) Consensus and validation 36(1) Global climate change. Socio-economic aspects of the problem 37(44) K. Ya. Kondratyev A. P. Cracknell Introduction 37(1) World Climate Research Programme (WCRP) 37(2) Summarized results of the Second World Climate Conference 39(4) UNCED-2 43(12) Framework Convention on Climate Change (FCCC) 45(2) Convention on Biological Diversity (CBD) 47(2) The Rio Declaration on Environment and Development (RDED) 49(1) Agenda 21 50(2) `Non-legally binding authoritative statement of principles for a global consensus on the management, conservation and sustainable development of all types of forest 52(2) UNCED-2 conclusion 54(1) Kyoto Protocol 55(6) Population growth 61(4) Sustainable development 65(8) Need for sustainable development 65(3) What is sustainable development 68(2) How can development be sustainable? 70(2) Moral issue 72(1) International Geosphere-Biosphere Programme (IGBP) 73(1) Ecological monitoring 74(4) Conclusion 78(3) Satellite climatology - current and future European systems 81(16) R. A. Vaughan Introduction 81(1) Data requirements 82(2) Current systems 84(5) International programmes 84(2) European programme 86(3) Future systems 89(3) ESAs Living Planet Programme 92(3) Conclusions 95(2) Atmospheric data assimilation 97(10) A. ONeill Introduction 97(1) What is data assimilation? 97(2) What are the benefits of data assimilation? 99(1) How is data assimilation done? 100(5) A simple statistical algorithm 100(1) A generalized algorithm: multivariate case 101(2) 4DVAR 103(2) Kalman filter 105(1) Concluding remarks 105(1) Supplement: the (error) covariance matrix Sx 105(2) Land-cover datasets derived from Earth-observation systems for global change science 107(10) A. S. Belward Introduction 107(1) Land cover and the global climate agenda 107(4) Land-use change forestry and IPCC reporting 109(1) Land-cover requirements of the International Geosphere-Biosphere Programme 110(1) Earth observation as an information source 111(3) Land-cover mapping 111(1) Biophysical parameters 112(2) Need for calibration and validation 114(1) Conclusions 114(3) Calibration of the Advanced Very High Resolution Radiometer 117(43) C. R. Nagaraja Rao J. T. Sullivan Introduction 117(3) AVHRR Pathfinder Program 120(1) Calibration of the Advanced Very High Resolution Radiometer 121(11) Pre-launch calibration of the visible and near-infrared channels 122(2) Pre-launch and post-launch calibration of the thermal infrared channels 124(8) Post-launch calibration of the visible and near-infrared channels 132(5) Determination of relative in-orbit degradation rates using radiometrically stable calibration sites 132(2) Absolute radiometric calibration using congruent path aircraft and satellite measurements of the upwelling radiation 134(1) Absolute calibration based on radiative model simulations of the upwelling radiation at the top of the atmosphere 134(3) Calibration based on intercomparison of sensors 137(1) Calibration of the AVHRRs on the NOAA-7, -9 and -11 spacecraft 137(13) Relative degradation in orbit 137(4) Absolute calibration of the AVHRRs on NOAA-7, -9 and -11 141(5) Calibration of the AVHRR on NOAA-14 146(2) Propagation of calibration uncertainties in products 148(2) AVHRR as a calibration reference 150(5) General 150(1) Method 151(1) Applications 152(3) Concluding remarks 155(5) Long-term global climate datasets from operational satellites 160(25) G. Ohring Physical basis for extracting information on climate variables from the satellite measurements 160(2) Physical basis of retrievals from reflected solar radiation 162(3) Physical basis of retrievals from infrared emission measurements 165(2) Physical basis of atmospheric soundings to study temperature and water vapour 167(2) Physical basis of retrievals from microwave emission measurements in atmospheric windows 169(1) Operational weather satellites 169(1) Global warming 170(2) Ocean temperature trends 172(2) Atmospheric ozone trends 174(1) Interannual climate variability - El Nino events 175(1) Cloudiness and aerosol trends 176(2) Land-surface change 178(5) Snow cover 183(2) Validation of climate model outputs 185(20) J. P. Palutikof Climate change and climate variability 185(2) Background to anthropogenic climate change 187(9) Present-day climage change: myth or reality? 192(1) Future trends 193(3) Three-dimensional climate models 196(6) Downscaling 202(3) Cooling off on global warming - the continuing debate 205(12) R. A. Vaughan Introduction 205(2) `Consensus over global warming 207(2) Measurement problems 209(2) Sea-level changes 211(1) Role of greenhouse gases 212(2) Solar effects 214(1) Political issues 214(1) Conclusions 215(2) International co-operation - a prequisite for global environmental observations 217(8) A. S. Belward Introduction 217(1) International co-operation in space 217(1) Research and climate studies 218(2) World Climate Research Programme (WCRP) 218(1) International Geosphere-Bisophere Programme (IGBP) 219(1) International Human Dimensions Programme on global environmental change (IHDP) 219(1) Global-scale operational observations 220(1) Global Ocean Observing System (GOOS) 220(1) Global Climate Observing System 220(1) Global Terrestrial Observing System 221(1) Global observing systems Earth observation and the Framework Convention on Climate Change 221(1) Integrated global observing strategy 221(4) Global dataset creation - experience of the IGBP DISCover project 225(8) A. S. Belward Introduction 225(1) Dataset development 225(1) DISCover classification scheme 226(1) DISCover classification methodology 226(2) DISCover validation strategy 228(1) Sampling strategy 229(1) Validation results 230(1) Conclusions 230(3) A policy context for global environmental information systems 233(8) A. S. Belward Introduction 233(1) Regional interests 233(2) Global interests 235(2) Role for Earth-observation systems 237(1) Global environmental-information systems 237(1) Conclusions 238(3) ENVISAT - the mission 241(12) R. A. Vaughan S. T. Wilson Introduction 241(1) ERS programme 242(1) Strategy 242(1) Envisat - the big platform 243(2) Orbit and mission 245(1) Instrument details 245(3) ASAR 245(1) AATSR 246(1) RA-2 246(1) MERIS 246(1) MIPAS 247(1) GOMOS 247(1) MWR 248(1) SCIAMACHY 248(1) DORIS 248(1) Instrument synergies 248(3) Envisat data policy 251(1) Conclusions 252(1) Supercomputing for the masses - SETI@Home project 253(8) C. P. Cracknell Introduction 253(1) Objective of the SETI@Home project 253(1) The SETI@Home project 254(3) Motivation of users 257(1) Possible relevance to remote sensing and climate change 258(3) Earth-observing systems and model-simulated datasets for climate study 261(18) V. Djepa R. A. Vaughan M. Menenti Introduction 261(1) Basic principles of Earth-observation-retrieved climate datasets 262(13) Climate components and feedback 262(7) Ocean datasets for climate study 269(2) Land-atmosphere interaction 271(4) Climate models and datasets 275(2) Conclusions 277(2) References 279(14) Index 293