Atjaunināt sīkdatņu piekrišanu

E-grāmata: Remote Sensing Geology

  • Formāts: EPUB+DRM
  • Izdošanas datums: 24-Nov-2017
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662558768
  • Formāts - EPUB+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 24-Nov-2017
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783662558768

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Over the past decade, advances in sensor technology, processing algorithms, and computational capacity have taken remote sensing to a level where observations can be transformed into quantitative measurements, and the technology can be used in near real-time for mapping, monitoring and decision-making. 

For the third edition, this widely acclaimed book has been fully revised, enlarged and updated. It covers remote sensing in a wide range of optical, thermal, and microwave wavelengths and their host of geologic applications featuring sample applications from around the globe. In addition, it presents state-of-the-art content on emerging themes such as atmospheric interactions, spectroscopy, spectral indices, prospectivity modelling, and multi-sensor geodata integration. The

subject matter is presented at a basic level, offering students an excellent introductory text on remote sensing. Further, the main part of the book will also be of great value to active researchers.

Excerpt from the review of Remote Sensing Geology (2nd ed., 2003): 

International Journal of Applied Earth Observation and Geoinformation, 5 (2004) 239240

....Graduate students, research workers and professional earth scientists will use this book to their advantage and with pleasure; it is well-written, to the point and with an emphasis on understanding the principles underlying this wide spectre of technology in its application to the earth sciences. Remote sensing is a fascinating subject; so is geology. The author has fully succeeded in providing a fascinating book that combines them in a handy volume. 

                                                                                                             Jan J. Nossin
1 Introduction
1(12)
1.1 Definition and Scope
1(1)
1.2 Development of Remote Sensing
1(1)
1.3 Fundamental Principle
2(2)
1.4 Advantages and Challenges
4(1)
1.5 A Typical Remote Sensing Programme
5(1)
1.6 Field Data (Ground Truth)
6(5)
1.6.1 Timing of Field Data Collection
7(1)
1.6.2 Sampling
7(1)
1.6.3 Types of Field Data
7(2)
1.6.4 GPS Survey
9(2)
1.7 Scope and Organization of This Book
11(2)
References
11(2)
2 Physical Principles
13(10)
2.1 The Nature of EM Radiation
13(1)
2.2 Radiation Principles and Sources
14(3)
2.2.1 Radiation Terminology
14(1)
2.2.2 Blackbody Radiation Principles
14(1)
2.2.3 Electromagnetic Spectrum
15(1)
2.2.4 Energy Available for Sensing
16(1)
2.3 Atmospheric Effects
17(1)
2.3.1 Atmospheric Scattering
17(1)
2.3.2 Atmospheric Absorption
17(1)
2.3.3 Atmospheric Emission
18(1)
2.4 Energy Interaction Mechanisms on the Ground
18(5)
2.4.1 Reflection Mechanism
19(1)
2.4.2 Transmission Mechanism
20(2)
2.4.3 Absorption Mechanism
22(1)
2.4.4 Earth's Emission
22(1)
References
22(1)
3 Spectra of Minerals and Rocks
23(14)
3.1 Introduction
23(1)
3.2 Basic Arrangements for Laboratory Spectroscopy
23(1)
3.3 Energy States and Transitions---Basic Concepts
24(2)
3.3.1 Electronic Processes
25(1)
3.3.2 Vibrational Processes
26(1)
3.4 Spectral Features of Mineralogical Constituents
26(3)
3.4.1 Visible and Near-Infrared (VNIR) Region (0.4--1.0 μm)
26(1)
3.4.2 Shortwave-Infrared (SWIR) Region (1--3 μm)
27(1)
3.4.3 Thermal-Infrared (TIR) Region (Approx. 3--25 μm)
28(1)
3.5 Spectra of Minerals
29(1)
3.6 Spectra of Rocks
30(2)
3.6.1 Solar Reflection Region (VNIR + SWIR)
30(1)
3.6.2 Thermal-Infrared Region
31(1)
3.7 Laboratory Versus Field Spectra
32(1)
3.8 Spectral Libraries
32(1)
3.9 Spectra of Other Common Objects
32(2)
3.10 Future
34(3)
References
34(3)
4 Photography
37(8)
4.1 Introduction
37(1)
4.1.1 Relative Merits and Limitations
37(1)
4.1.2 Working Principle
38(1)
4.2 Cameras
38(2)
4.3 Films
40(1)
4.4 Filters
40(1)
4.5 Vertical and Oblique Photography
41(1)
4.6 Ground Resolution Distance
42(1)
4.7 Photographic Missions
42(3)
4.7.1 Aerial Photographic Missions
42(1)
4.7.2 Space-Borne Photographic Missions
42(1)
4.7.3 Product Media
43(1)
References
43(2)
5 Multispectral Imaging Techniques
45(16)
5.1 Introduction
45(2)
5.1.1 Working Principle of a Digital Sensor
45(2)
5.1.2 Imaging Versus Non-imaging Optical Sensors and Terminology
47(1)
5.2 Factors Affecting Sensor Performance
47(2)
5.2.1 Sensor Resolution
48(1)
5.3 Non-imaging Radiometers
49(1)
5.3.1 Working Principle
49(1)
5.4 Imaging Sensors (Scanning Systems)
49(12)
5.4.1 What Is an Image?
49(3)
5.4.2 Optical-Mechanical Line Scanner (Whiskbroom Scanner)
52(1)
5.4.3 CCD Linear Array Scanner (Pushbroom Scanner)
53(2)
5.4.4 FPA and TDI Architecture of Spaceborne CCD Linear Arrays
55(1)
5.4.5 Digital Cameras (Area Arrays)
56(3)
References
59(2)
6 Important Spaceborne Missions and Multispectral Sensors
61(26)
6.1 Introduction
61(1)
6.2 Orbital Motion and Earth Orbits
61(5)
6.2.1 Kepler's Laws
61(1)
6.2.2 Earth Orbits
61(5)
6.3 Landsat Programme
66(4)
6.4 SPOT Programme
70(4)
6.5 IRS/Resourcesat Programme
74(2)
6.6 Japanese Programmes
76(1)
6.7 CBERS Series
77(1)
6.8 RESURS-1 Series
77(1)
6.9 TERRA-ASTER Sensor
78(2)
6.10 High Spatial Resolution Satellite Sensors
80(3)
6.11 Other Programmes (Past)
83(2)
6.12 Products from Scanner Data
85(2)
References
85(2)
7 Geometric Aspects of Photographs and Images
87(14)
7.1 Geometric Distortions
87(7)
7.1.1 Distortions Related to Sensor System
87(2)
7.1.2 Distortions Related to Sensor-Craft Altitude and Perturbations
89(2)
7.1.3 Distortions Related to the Earth's Shape and Spin
91(2)
7.1.4 Relief Displacement
93(1)
7.2 Stereoscopy
94(4)
7.2.1 Principle
94(1)
7.2.2 Vertical Exaggeration
95(1)
7.2.3 Aerial and Spaceborne Configurations for Stereo Coverage
95(1)
7.2.4 Photography Vis-a-Vis Line-Scanner Imagery for Stereoscopy
96(2)
7.2.5 Instrumentation for Stereo Viewing
98(1)
7.3 Photogrammetry
98(3)
7.3.1 Measurements on Photographs
98(2)
7.3.2 Measurements on Line-Scanner Images
100(1)
7.3.3 Aerial Vis-a-Vis Satellite Photogrammetry
100(1)
References
100(1)
8 Digital Elevation Model
101(6)
8.1 Introduction
101(1)
8.2 Data Acquisition for Generating DTM
101(3)
8.2.1 Ground Surveys
101(1)
8.2.2 Digitization of Topographic Contour Maps
101(1)
8.2.3 Conventional Aerial Photographic Photogrammetry
102(1)
8.2.4 Digital Photogrammetry Utilizing Remote Sensing Image Data
103(1)
8.2.5 UAV-Borne Digital Camera
103(1)
8.2.6 Satellite SAR Data
103(1)
8.2.7 Aerial LIDAR
104(1)
8.3 Orthorectification
104(1)
8.4 Derivatives of DEM
104(1)
8.5 Geological Applications of DEM
105(1)
8.6 Global DEM Data Sources
105(2)
References
105(2)
9 Image Quality and Principles of Interpretation
107(8)
9.1 Image Quality
107(2)
9.1.1 Factors Affecting Image Quality
107(2)
9.2 Handling of Photographs and Images
109(3)
9.2.1 Indexing
109(1)
9.2.2 Mosaic
110(1)
9.2.3 Scale Manipulation
110(1)
9.2.4 Stereo Viewing
110(1)
9.2.5 False Colour Composites (FCCs)
110(2)
9.3 Fundamentals of Interpretation
112(3)
9.3.1 Elements of Photo-Interpretation
112(1)
9.3.2 Geotechnical Elements
113(1)
References
114(1)
10 Atmospheric Corrections
115(8)
10.1 Introduction
115(1)
10.2 Atmospheric Effects
115(2)
10.2.1 Solar Reflection Region
115(2)
10.2.2 Thermal IR Region
117(1)
10.3 Procedures of Atmospheric Correction
117(6)
10.3.1 Empirical-Statistical Methods
117(2)
10.3.2 Radiative Transfer Modelling Based Methods
119(1)
10.3.3 Hybrid Methods
120(1)
References
121(2)
11 Interpretation of Solar Reflection Data
123(18)
11.1 Introduction
123(1)
11.2 Energy Budget Considerations for Sensing in the SOR Region
123(4)
11.2.1 Effect of Attitude of the Sun
123(2)
11.2.2 Effect of Atmospheric-Meteorological Conditions
125(1)
11.2.3 Effect of Topographic Slope and Aspect
125(1)
11.2.4 Effect of Sensor Look Angle
126(1)
11.2.5 Effect of Target Reflectance
126(1)
11.3 Acquisition and Processing of Solar Reflection Image Data
127(1)
11.4 Interpretation
127(7)
11.4.1 Interpretation of Panchromatic Black-and-White Products
127(3)
11.4.2 Interpretation of Multispectral Products
130(3)
11.4.3 Interpretation of Colour Products
133(1)
11.5 Computation of Reflectance
134(4)
11.5.1 Spectral Radiance
134(1)
11.5.2 Top of the Atmosphere (TOA) Reflectance
134(1)
11.5.3 Target Irradiance in Solar Reflection Region in an Undulating Terrain
135(1)
11.5.4 Influence of Topography on Solar Reflection Image Data
135(1)
11.5.5 Topographic Correction of Solar Reflection Images
136(2)
11.6 Active Optical Sensor-Luminex
138(1)
11.7 Scope for Geological Applications
138(3)
References
139(2)
12 Interpretation of Thermal-IR Data
141(22)
12.1 Introduction
141(1)
12.2 Earth's Radiant Energy---Basic Considerations
141(5)
12.2.1 Surface (Kinetic) Temperature
141(4)
12.2.2 Emissivity
145(1)
12.3 Broad-Band Thermal-IR Sensing
146(7)
12.3.1 Radiant Temperature and Kinetic Temperature
146(1)
12.3.2 Acquisition of Broad-Band Thermal-IR Data
146(2)
12.3.3 Processing of Broad-Band TIR Images
148(1)
12.3.4 Interpretation of Thermal-IR Imagery
148(2)
12.3.5 Thermal Inertia Mapping
150(1)
12.3.6 Scope for Geological Applications---Broad-Band Thermal Sensing
151(2)
12.4 Temperature Estimation
153(4)
12.4.1 Computation of Spectral Radiance
154(1)
12.4.2 Atmospheric Correction of Spectral Radiance Data
154(1)
12.4.3 Conversion of Spectral Radiance to Temperature
154(3)
12.4.4 Sub-pixel Temperature Estimation
157(1)
12.5 Thermal-IR Multispectral Sensing
157(2)
12.5.1 Multispectral Sensors in the TIR
157(1)
12.5.2 Data Correction
158(1)
12.5.3 Temperature/Emissivity Separation (TES)
158(1)
12.5.4 SO2 Atmospheric Absorption
159(1)
12.5.5 Applications
159(1)
12.6 LIDAR Sensing
159(1)
12.6.1 Working Principle
159(1)
12.6.2 Scope for Geological Applications
159(1)
12.7 Future
160(3)
References
160(3)
13 Digital Image Processing of Multispectral Data
163(40)
13.1 Introduction
163(4)
13.1.1 What Is Digital Imagery?
163(1)
13.1.2 Sources of Multispectral Image Data
163(1)
13.1.3 Storage and Supply of Digital Image Data
163(2)
13.1.4 Image Processing Systems
165(2)
13.1.5 Techniques of Digital Image Processing
167(1)
13.2 Radiometric Image Correction
167(2)
13.2.1 Sensor Calibration
167(1)
13.2.2 De-Striping
167(2)
13.2.3 Correction for Periodic and Spike Noise
169(1)
13.3 Geometric Corrections
169(1)
13.3.1 Correction for Panoramic Distortion
169(1)
13.3.2 Correction for Skewing Due to Earth's Rotation
169(1)
13.3.3 Correction for Aspect Ratio Distortion
169(1)
13.4 Registration
170(2)
13.4.1 Definition and Importance
170(1)
13.4.2 Principle
170(1)
13.4.3 Procedure
171(1)
13.5 Image Enhancement
172(2)
13.6 Image Filtering
174(5)
13.6.1 High-Pass Filtering (Edge Enhancement)
175(2)
13.6.2 Image Smoothing
177(1)
13.6.3 Fourier Filtering
177(2)
13.7 Image Transformation
179(6)
13.7.1 Addition and Subtraction
179(1)
13.7.2 Principal Component Transformation
180(3)
13.7.3 Other Transformations
183(1)
13.7.4 Decorrelation Stretching
183(1)
13.7.5 Ratioing
183(2)
13.8 Colour Enhancement
185(3)
13.8.1 Advantages
185(1)
13.8.2 Pseudocolour Display
186(1)
13.8.3 Colour Display of Multiple Images---Guidelines for Image Selection
186(1)
13.8.4 Colour Models
187(1)
13.9 Image Fusion
188(2)
13.9.1 Introduction
188(1)
13.9.2 Techniques of Image Fusion
188(2)
13.10 2.5-Dimensional Visualization
190(1)
13.10.1 Shaded Relief Model (SRM)
190(1)
13.10.2 Synthetic Stereo
191(1)
13.10.3 Perspective View
191(1)
13.11 Image Segmentation/Slicing
191(2)
13.11.1 General
191(1)
13.11.2 Object Based Image Analysis
192(1)
13.12 Digital Image Classification
193(10)
13.12.1 Supervised Classification
193(4)
13.12.2 Unsupervised Classification
197(1)
13.12.3 Fuzzy Classification
197(1)
13.12.4 Linear Mixture Modelling (LMM)
198(1)
13.12.5 Artificial Neural Network Classification
198(1)
13.12.6 Classification Accuracy Assessment
199(1)
13.12.7 Super Resolution Techniques
199(1)
13.12.8 Scope for Geological Applications
200(1)
References
201(2)
14 Imaging Spectroscopy
203(18)
14.1 Introduction
203(1)
14.2 Spectral Considerations
203(6)
14.2.1 Processes Leading to Spectral Features
203(1)
14.2.2 Continuum and Absorption Depth---Terminology
203(2)
14.2.3 High-Resolution Spectral Features of Minerals
205(1)
14.2.4 High-Resolution Spectral Features of Stressed Vegetation
205(1)
14.2.5 Mixtures
206(3)
14.2.6 Spectral Libraries
209(1)
14.3 Hyperspectral Sensors
209(2)
14.3.1 Working Principle of Imaging Spectrometers
209(1)
14.3.2 Sensor Specification Parameters
210(1)
14.3.3 Selected Airborne and Space-Borne Hyperspectral Sensors
210(1)
14.4 Processing of Hyperspectral Data
211(5)
14.4.1 Pre-processing
211(2)
14.4.2 Radiance-to-Reflectance Transformation
213(1)
14.4.3 Data Analysis for Feature Mapping
213(3)
14.5 Applications and Future
216(5)
References
218(3)
15 Microwave Sensors
221(14)
15.1 Introduction
221(1)
15.2 Passive Microwave Sensors and Radiometry
221(1)
15.2.1 Principle
221(1)
15.2.2 Measurement and Interpretation
221(1)
15.3 Active Microwave Sensors---Imaging Radars
222(13)
15.3.1 What is a Radar?
222(1)
15.3.2 Side-Looking Airborne Radar---Basic Configuration
223(3)
15.3.3 Spatial Positioning and Ground Resolution from SLAR/SAR
226(1)
15.3.4 SAR System Specifications
227(1)
15.3.5 Imaging Modes of SAR Sensors
228(1)
15.3.6 Selected Space-Borne SAR Sensors
228(5)
References
233(2)
16 Interpretation of SAR Imagery
235(18)
16.1 Introduction
235(1)
16.2 SAR Image Characteristics
235(4)
16.2.1 Radiometric Characteristics
235(3)
16.2.2 Geometric Characteristics
238(1)
16.3 SAR Stereoscopy and Radargrammetry
239(1)
16.4 Radar Return
240(6)
16.4.1 Radar Equation
240(1)
16.4.2 Radar System Factors
240(2)
16.4.3 Terrain Factors
242(4)
16.5 Processing of SAR Image Data
246(1)
16.6 SAR Polarimetry and Tomography
247(1)
16.7 Field Data (Ground Truth)
247(1)
16.7.1 Corner Reflectors (CRs)
247(1)
16.7.2 Scatterometers
247(1)
16.8 Interpretation and Scope for Geological Applications
248(5)
References
251(2)
17 SAR Interferometry
253(14)
17.1 Introduction
253(1)
17.2 Principle of SAR Interferometry
253(2)
17.3 Configurations of Data Acquisition for InSAR
255(1)
17.4 Baseline
256(1)
17.5 Ground Truth and Corner Reflectors
256(1)
17.6 Methodology of Data Processing
257(2)
17.7 Differential SAR Interferometry (DInSAR)
259(1)
17.8 Factors Affecting SAR Interferometry
260(1)
17.9 InSAR Applications
260(4)
17.10 Pol-InSAR (Polarimetric InSAR)
264(1)
17.11 Future
264(3)
References
264(3)
18 Integrating Remote Sensing Data with Other Geodata (GIS Approach)
267(24)
18.1 Integrated Multidisciplinary Geo-investigations
267(1)
18.1.1 Introduction
267(1)
18.1.2 Scope of the Present Discussion
268(1)
18.2 Geographic Information System (GIS)---Basics
268(4)
18.2.1 What is GIS?
268(2)
18.2.2 GIS Data-Base
270(1)
18.2.3 Continuous Versus Categorical Data
270(1)
18.2.4 Basic Data Structures in GIS
271(1)
18.2.5 Main Segments of GIS
272(1)
18.3 Data Acquisition (Sources of Geodata in a GIS)
272(3)
18.3.1 Remote Sensing Data
272(1)
18.3.2 Geophysical Data
273(1)
18.3.3 Gamma Radiation Data
274(1)
18.3.4 Geochemical Data
274(1)
18.3.5 Geological Data
274(1)
18.3.6 Topographical Data
274(1)
18.3.7 Other Thematic Data
275(1)
18.4 Pre-processing
275(4)
18.5 Data Management
279(1)
18.6 Data Manipulation and Analysis
279(7)
18.6.1 Image Processing Operations
279(2)
18.6.2 Classification
281(2)
18.6.3 GIS Analysis
283(3)
18.7 GIS Based Modelling
286(2)
18.8 Applications
288(3)
References
288(3)
19 Geological Applications
291(126)
19.1 Introduction
291(2)
19.2 Accuracy Assessment
293(1)
19.2.1 Factors Affecting Pixel Radiometry and Geometry---An Overview
293(1)
19.2.2 Positional Accuracy Thematic Accuracy
294(1)
19.2.3 Thematic Accuracy
294(1)
19.3 Geomorphology
294(8)
19.3.1 Tectonic Landforms
295(1)
19.3.2 Volcanic Landforms
295(1)
19.3.3 Fluvial Landforms
295(3)
19.3.4 Coastal and Deltaic Landforms
298(2)
19.3.5 Aeolian Landforms
300(1)
19.3.6 Glacial Landforms
301(1)
19.4 Structure
302(20)
19.4.1 Bedding and Simple-Dipping Strata
302(1)
19.4.2 Folds
303(5)
19.4.3 Faults
308(1)
19.4.4 Features of Global Tectonics
309(2)
19.4.5 Lineaments
311(9)
19.4.6 Circular Features
320(1)
19.4.7 Intrusives
320(1)
19.4.8 Unconformity
321(1)
19.5 Stratigraphy
322(1)
19.6 Lithology
323(9)
19.6.1 Mapping of Broad-Scale Lithologic Units---General
324(1)
19.6.2 Sedimentary Rocks
324(3)
19.6.3 Igneous Rocks
327(2)
19.6.4 Metamorphic Rocks
329(3)
19.7 Identification of Mineral Assemblages from ASTER Ratio Indices
332(7)
19.7.1 Introduction
332(1)
19.7.2 Approaches for Computing Spectral Ratios
333(1)
19.7.3 ASTER Ratio Indices in the VNIR Region
333(1)
19.7.4 ASTER Ratio Indices in the SWIR Region
334(2)
19.7.5 ASTER Ratio Indices in the Thermal IR Region
336(3)
19.8 Mineral Exploration
339(13)
19.8.1 Remote Sensing in Mineral Exploration
339(1)
19.8.2 Main Types of Mineral Deposits and Their Surface Indications
340(1)
19.8.3 Stratigraphical-Lithological Guides
341(1)
19.8.4 Geomorphological Guides
341(1)
19.8.5 Structural Guides
342(2)
19.8.6 Guides Formed by Rock Alteration
344(3)
19.8.7 Geobotanical Guides
347(1)
19.8.8 Application Examples
348(4)
19.9 GIS-Based Mineral Prospectivity Modelling
352(3)
19.9.1 Introduction
352(1)
19.9.2 Approaches in Mineral Prospectivity Modelling
353(2)
19.10 Hydrocarbon Exploration
355(7)
19.10.1 Surface Geomorphic Anomalies
355(1)
19.10.2 Lineament-Structural Control on the Distribution of Hydrocarbon Pools
356(1)
19.10.3 Surface Alterations Related to Hydrocarbon Seepage Hydrocarbon Index
356(3)
19.10.4 Hydrocarbon Index (HI)
359(1)
19.10.5 Thermal Anomalies
359(2)
19.10.6 Oceanic Oil Slicks
361(1)
19.11 Groundwater Investigations
362(9)
19.11.1 Factors Affecting Groundwater Occurrence
362(1)
19.11.2 Indicators for Groundwater on Remote Sensing Images
362(1)
19.11.3 Application Examples
363(8)
19.12 Engineering Geological Investigations
371(5)
19.12.1 River Valley Projects---Dams and Reservoirs
372(1)
19.12.2 Landslides
373(2)
19.12.3 Route Location (Highways and Railroads) and Canal, Pipeline and Tunnel Alignments
375(1)
19.13 Neotectonism, Seismic Hazard and Damage Assessment
376(5)
19.13.1 Neotectonism
376(2)
19.13.2 Local Ground Conditions
378(3)
19.13.3 Disaster Assessment
381(1)
19.14 Volcanic and Geothermal Energy Applications
381(9)
19.14.1 Volcano Mapping and Monitoring
382(6)
19.14.2 Geothermal Energy
388(2)
19.15 Coal Fires
390(5)
19.16 Snow, Ice and Glaciers
395(5)
19.16.1 Introduction
395(1)
19.16.2 Snow/Ice Facies
395(1)
19.16.3 Snow Cover Mapping
396(1)
19.16.4 Glaciers
397(2)
19.16.5 SAR Data Application in Snow-Ice Studies
399(1)
19.17 Environmental Applications
400(6)
19.17.1 Vegetation
400(2)
19.17.2 Land Use and Mining
402(1)
19.17.3 Soil Erosion
402(1)
19.17.4 Oil Spills
403(2)
19.17.5 Smoke from Oil Well Fires
405(1)
19.17.6 Atmospheric Pollution
406(1)
19.18 Future
406(11)
References
407(10)
Appendices 417(6)
Brainstorming 423
Gupta, Ravi P.

Indian Institute of Technology, Roorkee