Atjaunināt sīkdatņu piekrišanu

Renewable and Alternative Energy Resources [Mīkstie vāki]

(Green Energy Expert, International Scientif), (International Scientific Organization, Pakistan), , (Assistant Professor and Group Leader, Nano and Biomaterials Lab, Department of Chemistry, University of Agriculture, Faisalabad, Pakistan)
  • Formāts: Paperback / softback, 806 pages, height x width: 235x191 mm, weight: 450 g, Approx. 150 illustrations; Illustrations
  • Izdošanas datums: 01-Dec-2021
  • Izdevniecība: Academic Press Inc
  • ISBN-10: 0128181508
  • ISBN-13: 9780128181508
  • Mīkstie vāki
  • Cena: 231,58 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 806 pages, height x width: 235x191 mm, weight: 450 g, Approx. 150 illustrations; Illustrations
  • Izdošanas datums: 01-Dec-2021
  • Izdevniecība: Academic Press Inc
  • ISBN-10: 0128181508
  • ISBN-13: 9780128181508

Renewable and Alternative Energy Resources provides comprehensive information on the status of all renewable and non-renewable energy resources. Chapters discuss the technological developments and environmental impacts of each energy source, giving a valuable reference of up-to-date scientific progress, technical application and comparative ecological analysis of each source. In addition to understanding the process involved in generating energy, the book looks at possible merits and demerits relevant to environmental problems, highlighting the importance of the implementation of sustainable, approachable, cost effective and durable renewable energy resources.

Designed to highlight relevant concepts on energy efficiency, current technologies and ongoing industrial trends, this is an ideal reference source for academics, practitioners, professionals and upper-level students interested in the latest research on renewable energy.

  • Discusses developments in both renewable and non-renewable energy sources
  • Highlights the status of exploitive, experimental studies conducted on the global status of alternative energies
  • Outlines novel opportunities for improving technologies for the billion-dollar renewable industry
About the authors xxiii
Foreword xxv
Preface xxvii
Acknowledgments xxix
Chapter 1 Energy resources and utilization 1(30)
1.1 Sources and types of energy resources
1(29)
1.1.1 Nonrenewable energy resources
2(2)
1.1.2 Renewable energy resources
4(9)
1.1.3 Energy policies
13(2)
1.1.4 Biofuels
15(11)
1.1.5 Countries with major dependency on nonrenewable energy
26(1)
1.1.6 Emerging technologies
27(1)
1.1.7 Future perspective
28(2)
References
30(1)
Chapter 2 Nonrenewable energy resources 31(82)
2.1 Nonrenewable energy resources
31(80)
2.1.1 Coal
31(29)
2.1.2 Petroleum
60(18)
2.1.3 Natural gas
78(16)
2.1.4 Nuclear power
94(17)
References
111(2)
Chapter 3 Future energy options: an overview 113(58)
3.1 Shale gas
113(17)
3.1.1 Origin of shale gas
113(4)
3.1.2 Distinctive properties of shale gas
117(1)
3.1.3 History of shale gas
118(1)
3.1.4 Natural reserves of shale gas
118(2)
3.1.5 Production and extraction of shale gas
120(4)
3.1.6 Shale gas in worldwide basins
124(1)
3.1.7 Estimates of conservative shale gas basins
124(1)
3.1.8 Highly dependent countries
124(1)
3.1.9 Proper natural gas infrastructure
125(1)
3.1.10 Importance of shale gas
125(1)
3.1.11 Global shale gas reserves
126(1)
3.1.12 Environmental impacts of shale gas
127(3)
3.1.13 Future of shale gas
130(1)
3.2 Offshore wind energy and offshore wind farm
130(26)
3.2.1 Offshore wind energy
130(1)
3.2.2 Working of wind turbines
131(1)
3.2.3 Types of offshore wind turbines
132(2)
3.2.4 Offshore wind farm
134(3)
3.2.5 Major components of wind turbines
137(2)
3.2.6 Offshore wind energy resources
139(1)
3.2.7 Commercial offshore wind energy generation
139(1)
3.2.8 Transportation of wind generated energy
140(2)
3.2.9 Economics of building and operating offshore wind farms
142(14)
3.2.10 Future energy projects
156(1)
3.3 Carbon capture technology
156(13)
3.3.1 Introduction of carbon capture technology
156(2)
3.3.2 Working principle and capturing methods
158(1)
3.3.3 Postcombustion processes
159(1)
3.3.4 Precombustion processes
159(1)
3.3.5 Oxyfuel combustion
160(1)
3.3.6 Carbon dioxide separation technologies
161(1)
3.3.7 Chemical looping combustion
162(2)
3.3.8 Membrane separation process
164(1)
3.3.9 Hydrate based separation
164(1)
3.3.10 Cryogenic distillation
165(1)
3.3.11 Transportation of carbon dioxide
166(1)
3.3.12 Storage of carbon dioxide
167(1)
3.3.13 Impacts on environment
167(1)
3.3.14 Global scenario
168(1)
References
169(2)
Chapter 4 Solar thermal energy and photovoltaic systems 171(92)
4.1 Solar thermal energy
171(55)
4.1.1 Concentrated solar thermal systems
172(6)
4.1.2 Integrated solar combined cycle system
178(1)
4.1.3 Combined cycle system
178(1)
4.1.4 Combined power plant
179(2)
4.1.5 Solar thermal power systems using concentrated solar energy
181(1)
4.1.6 Solar ponds
181(6)
4.1.7 Energy efficiency in buildings
187(6)
4.1.8 Indirect gain system rules of thumb for thermal storage walls
193(6)
4.1.9 Greenhouse gases-a severe atmospheric constrain
199(1)
4.1.10 Solar furnace
199(2)
4.1.11 Solar constant (solar irradiance)
201(5)
4.1.12 Introduction to solar radiation measurements
206(3)
4.1.13 Solar thermal energy collectors
209(5)
4.1.14 Heating during industrial processes
214(3)
4.1.15 Selective absorption surfaces
217(1)
4.1.16 Number of covers
218(1)
4.1.17 Thermal radiation law
219(3)
4.1.18 Heat transfer
222(4)
4.1.19 Future of solar based energy systems
226(1)
4.2 Solar photovoltaic system
226(35)
4.2.1 Doping
227(3)
4.2.2 Electronic band structure in doped semiconductors
230(1)
4.2.3 Semiconductors and doping
230(3)
4.2.4 Energy of photon
233(1)
4.2.5 Fermi energy levels
234(1)
4.2.6 Importance of fermi energy levels
234(1)
4.2.7 Intrinsic semiconductor
235(6)
4.2.8 Materials of photovoltaic cells
241(1)
4.2.9 Types of cells
242(1)
4.2.10 Use of batteries in PV systems
243(1)
4.2.11 Standards for SPV
244(1)
4.2.12 Stand-alone systems
245(1)
4.2.13 Solar photovoltaic water pumping system
246(6)
4.2.14 Grid-tied solar systems
252(3)
4.2.15 Pace-based solar power-the power of the future
255(1)
4.2.16 Nanotechnology in solar cells
256(4)
4.2.17 Recent advancements in solar photovoltaics
260(1)
References
261(2)
Chapter 5 Wind energy and its harnessing systems 263(62)
5.1 Wind energy and wind power
263(60)
5.1.1 History of wind energy
263(1)
5.1.2 Current status of wind energy
263(1)
5.1.3 Modern wind turbines
264(1)
5.1.4 Types of wind turbines
265(2)
5.1.5 Horizontal axis wind turbine
267(3)
5.1.6 Vertical axis wind turbine
270(3)
5.1.7 Off-shore wind farm
273(1)
5.1.8 Aerodynamics of wind turbine
273(2)
5.1.9 Energy extraction of a single wind turbine
275(1)
5.1.10 Wind speed patterns
275(1)
5.1.11 Wind speed distribution
276(1)
5.1.12 Micro-meteorological range: turbulence
277(1)
5.1.13 Distribution of wind direction
277(5)
5.1.14 Power curve of a wind turbine
282(1)
5.1.15 Uncertainty in measurement of power curves
283(1)
5.1.16 Energy of wind
283(6)
5.1.17 Wind energy regional resource centers
289(1)
5.1.18 Resource centers
289(1)
5.1.19 Regulating systems for rotor
290(1)
5.1.20 Modes of wind power generation
291(1)
5.1.21 Parts of a horizontal axis wind turbine generator
292(4)
5.1.22 Advantages of wind power
296(2)
5.1.23 Challenges of wind power
298(2)
5.1.24 Wind farms
300(1)
5.1.25 Wind resource surveys
301(1)
5.1.26 Energy demand
301(1)
5.1.27 Performance preferences
302(1)
5.1.28 Probable risks in investment
302(1)
5.1.29 Benefits of wind energy
303(1)
5.1.30 Weather stations
303(1)
5.1.31 Mathematical model
303(1)
5.1.32 Wind energy potential
304(2)
5.1.33 Controllable grid interface
306(1)
5.1.34 Testing capabilities
307(1)
5.1.35 Grid connections
307(2)
5.1.36 Reactive power compensation
309(1)
5.1.37 Frequency and power control
310(1)
5.1.38 Wind energy penetration
311(1)
5.1.39 Wind power capacity penetration
311(1)
5.1.40 Maximum share of wind power
311(1)
5.1.41 Wind speed, power input and annual output of energy
312(4)
5.1.42 Levels of controls in wind farm
316(1)
5.1.43 Methods of wind-energy-conversion-system control
317(1)
5.1.44 Competitiveness of wind energy
317(1)
5.1.45 Basic cost of wind energy
318(1)
5.1.46 Economic benefits of wind energy
318(2)
5.1.47 Future of wind energy
320(3)
References
323(2)
Chapter 6 Hydropower energy generating systems 325(34)
6.1 Small hydropower plants
325(3)
6.2 Classification of hydropower plants
328(1)
6.3 Classification of hydraulic turbines
329(6)
6.3.1 Reaction turbine
331(1)
6.3.2 Axial flow turbines
331(1)
6.3.3 Tube turbine
331(1)
6.3.4 Bulb turbine
331(1)
6.3.5 Straflo turbine
331(1)
6.3.6 Impulse turbines
331(1)
6.3.7 Pelton turbine
331(2)
6.3.8 Turgo turbine
333(1)
6.3.9 Ossberger turbines
334(1)
6.4 Selection of turbine on the basis of specific speed
335(1)
6.5 Types of small hydropower schemes
335(3)
6.5.1 Run-of-river scheme
336(1)
6.5.2 Pressure forebay
336(1)
6.5.3 Civil works
337(1)
6.6 Components of hydroelectric power plants
338(3)
6.6.1 Reservoir
338(1)
6.6.2 Dam
339(1)
6.6.3 Trash rack
339(1)
6.6.4 Forebay
339(1)
6.6.5 Surge tank
339(1)
6.6.6 Penstock
340(1)
6.6.7 Spillway
340(1)
6.6.8 Power house
340(1)
6.6.9 Prime movers of hydro turbines
341(1)
6.6.10 Draft tube
341(1)
6.7 Important components of hydroelectric power plants
341(2)
6.7.1 Hydroelectric dams
341(1)
6.7.2 Artificial water reservoir
341(1)
6.7.3 Intake or control gates
342(1)
6.7.4 Penstock and shaft
342(1)
6.7.5 Water turbines
342(1)
6.7.6 Hydroelectric generators
343(1)
6.8 Low head and very low head hydro power generation
343(1)
6.9 Working principle of electrical generators
344(1)
6.10 Working theory of induction generator
344(1)
6.11 Self-excited induction generation
345(1)
6.12 Applications of induction generators
345(1)
6.13 Isolated induction generator
346(3)
6.14 Installation of small hydroelectric projects with unique features
349(3)
6.14.1 Use of water power to fight the poverty
349(1)
6.14.2 Basics of micro-hydro power
349(1)
6.14.3 Environmental impacts of hydropower
350(2)
6.14.4 The power to recharge communities
352(1)
6.14.5 Cost of micro hydropower plant
352(1)
6.15 Western yamuna canal hydel Yamunanagar
352(1)
6.16 Kakroi micro hydel project
353(1)
6.17 The outlook for the hydropower
353(2)
6.18 Long-term global scenarios for hydropower
355(2)
6.19 Future of hydroelectric power projects
357(1)
References
357(2)
Chapter 7 Power generation by ocean energy 359(72)
7.1 Tidal energy
359(56)
7.1.1 Types of tidal plants
359(1)
7.1.2 Barrage tidal plants
360(2)
7.1.3 Tidal range
362(3)
7.1.4 Different types of tidal energy systems
365(1)
7.1.5 The main tidal-power utilization technologies
366(1)
7.1.6 Waves and tidal energy
367(1)
7.1.7 Operational tidal power plants
368(1)
7.1.8 Tidal power plants (barrage)
368(1)
7.1.9 Tidal power plants (tidal device)
368(1)
7.1.10 Main turbine type
369(5)
7.1.11 Tidal power generation
374(1)
7.1.12 Alternatives of tidal power turbines
374(2)
7.1.13 Fundamental concepts about tides
376(1)
7.1.14 Potential for tidal power
376(1)
7.1.15 Wave energy technologies
377(1)
7.1.16 Tidal power technologies
377(1)
7.1.17 Environmental impacts
378(1)
7.1.18 Preliminary feasibility study
379(1)
7.1.19 Different tidal power plants
379(8)
7.1.20 Ocean wave energy
387(5)
7.1.21 Methodology for wave power data generation
392(2)
7.1.22 Terms relating waves to water depth
394(2)
7.1.23 Development of mathematical model
396(1)
7.1.24 Converting wave energy into electricity-wave energy conversion
397(7)
7.1.25 Parameters
404(1)
7.1.26 Wave profile devices
404(2)
7.1.27 Orbital motion of waves
406(1)
7.1.28 Pelamis wave energy converter
407(1)
7.1.29 Oscillating water column-a known wave energy device
407(1)
7.1.30 Wave capture device
408(2)
7.1.31 Ocean waves and oscillating systems
410(1)
7.1.32 Oscillating water column
411(2)
7.1.33 Wave energy test facilities
413(1)
7.1.34 Future trends of wave based energy resources
414(1)
7.2 Ocean thermal energy conversion
415(15)
7.2.1 Working of ocean thermal energy convertors
416(1)
7.2.2 Usefulness of ocean thermal energy conversion system
417(2)
7.2.3 Power generation from ocean-thermal-energy-conversion
419(1)
7.2.4 Closed cycle
419(5)
7.2.5 Benefits and opportunities of ocean-thermal-energy-conversion
424(2)
7.2.6 Ocean-thermal-energy-conversion power plant: operational system
426(1)
7.2.7 Ocean-thermal-energy-conversion power plant: future expectations
427(1)
7.2.8 Ocean thermal energy conversion: global perspective
428(1)
7.2.9 Global scenario and future perspective
429(1)
References
430(1)
Chapter 8 Geothermal energy production 431(124)
8.1 Geothermal energy
431(1)
8.2 Three parts of earth's interior
432(3)
8.2.1 Earth's crust
432(1)
8.2.2 Earth's mantle
433(1)
8.2.3 Earth's core
434(1)
8.3 Plate tectonics theory-lithosphere plates of earth
435(4)
8.3.1 Plate boundaries
436(1)
8.3.2 Power just beneath the feet
436(1)
8.3.3 Risk of quakes
437(1)
8.3.4 Geothermal field
437(1)
8.3.5 Geothermal gradients
437(1)
8.3.6 Geothermal resources
438(1)
8.3.7 Hydrothermal resources
439(1)
8.4 Vapor-dominated geothermal plants
439(3)
8.4.1 Geo-pressured resource
440(1)
8.4.2 Magma
441(1)
8.5 Geothermal power generation
442(1)
8.6 Liquid-dominated geothermal plants
443(4)
8.6.1 Direct steam systems
443(2)
8.6.2 Flash steam systems
445(2)
8.6.3 Ground source heat pumps
447(1)
8.7 Types of geothermal energy systems
447(4)
8.7.1 Direct use and district heating systems
447(1)
8.7.2 Direct use of geothermal resources
448(3)
8.8 Geothermal technologies
451(1)
8.9 Applicability of geothermal energy resources
452(1)
8.10 Detailed insight of lithosphere/geosphere and all relevant processes
453(99)
8.10.1 Lithosphere/geosphere
453(2)
8.10.2 Rock cycle
455(2)
8.10.3 Geologic time scale
457(1)
8.10.4 Concept of uniformitarianism
457(4)
8.10.5 Composition of rocks
461(3)
8.10.6 Characteristics of igneous rocks
464(2)
8.10.7 Characteristics of sedimentary rocks
466(2)
8.10.8 Characteristics of metamorphic rocks
468(3)
8.10.9 Structure of earth and isostacy
471(2)
8.10.10 Plate tectonics
473(4)
8.10.11 Crustal formation processes
477(3)
8.10.12 Mountain building and evolution
480(3)
8.10.13 Folding and faulting
483(4)
8.10.14 Earthquakes
487(5)
8.10.15 Volcanism
492(1)
8.10.16 Physiography of the earth's terrestrial surface
492(3)
8.10.17 Physiography of ocean basins
495(2)
8.10.18 Models of landform development
497(1)
8.10.19 Weathering
498(5)
8.10.20 Landform of weathering
503(1)
8.10.21 Introduction to soil
504(6)
8.10.22 Soil pedogenesis and pedogenic processes
510(2)
8.10.23 Soil classification
512(4)
8.10.24 Erosion and deposition
516(4)
8.10.25 Hillslope processes and mass movements
520(4)
8.10.26 Stream flow and fluvial processes
524(3)
8.10.27 Fluvial landforms
527(3)
8.10.28 Glaciation
530(1)
8.10.29 Glacial processes
531(5)
8.10.30 Landforms of glaciation
536(3)
8.10.31 Periglacial processes and landforms
539(7)
8.10.32 Eolian processes and landforms
546(5)
8.10.33 Interaction of lithosphere with other spheres
551(1)
8.11 Future of geothermal energy
552(1)
References
553(2)
Chapter 9 Renewable energy from biomass 555(50)
9.1 Biomass-renewable energy from plants and animals
555(1)
9.2 Biomass resources and bio-renewable resources
555(3)
9.3 Biofuel
558(1)
9.3.1 Ethanol
559(1)
9.3.2 Biodiesel
559(1)
9.3.3 Biogas
559(1)
9.4 Benefits of anaerobic digestion and biogas
559(3)
9.4.1 Biogas formation
560(2)
9.5 Bioenergy conversion technologies
562(5)
9.5.1 Thermal conversion
562(2)
9.5.2 Thermochemical conversion
564(1)
9.5.3 Gasification
564(1)
9.5.4 Bio-chemical conversion
565(1)
9.5.5 Chemical conversion
566(1)
9.6 Biogas technology
567(16)
9.6.1 Factors affecting the biogas production
569(1)
9.6.2 Biogas plant
570(6)
9.6.3 Treatment of human excreta
576(4)
9.6.4 The GE's Jenbacher landfill gas concept
580(1)
9.6.5 Turn liquid waste into energy with anaerobic digestion
580(2)
9.6.6 Sugar and distillery water
582(1)
9.6.7 Alcohol distillery effluent
582(1)
9.7 Black liquor gasification
583(1)
9.8 Black liquor gasifiers and system integration
583(2)
9.9 Biomass cogeneration systems
585(5)
9.9.1 Processing techniques
587(3)
9.9.2 Power transmission
590(1)
9.10 Rice milling
590(1)
9.10.1 Grading and cleaning
590(1)
9.10.2 Milling
590(1)
9.10.3 Technology and technical know how
591(1)
9.11 Ethanol from biomass
591(3)
9.11.1 History of ethanol
592(1)
9.11.2 Preparation of ethanol
593(1)
9.11.3 Global statistics about ethanol
593(1)
9.11.4 Importance of cellulosic ethanol
594(1)
9.12 Production and utilization of biodiesel
594(6)
9.13 Major barriers and challenges
600(1)
9.14 Environmental benefits
601(1)
9.15 Biomass power is carbon neutral
601(1)
9.16 Future of biomass-based energy resources
602(1)
References
603(2)
Chapter 10 Hydrogen and fuel cells 605(54)
10.1 Fuel cell
605(1)
10.2 Working of fuel cells
605(1)
10.3 Design of fuel cells
606(1)
10.4 Basic principles of operation
606(1)
10.5 Working of fuel processors
607(1)
10.6 Hydrogen fuel cell
607(1)
10.7 Direct methanol fuel cell
608(1)
10.8 Different types of fuel cells
609(3)
10.8.1 Alkali fuel cells
609(1)
10.8.2 Molten carbonate fuel cells
609(1)
10.8.3 Phosphoric acid fuel cells
610(1)
10.8.4 Solid oxide fuel cells
610(2)
10.9 Elements of proton exchange membrane fuel cells
612(1)
10.9.1 Working principle
612(1)
10.9.2 Advantages of the fuel cell technology
613(1)
10.10 Types of electrolytes in fuel cells
613(3)
10.10.1 Fuel cell with basic electrolyte
613(2)
10.10.2 Fuel cells with an acidic electrolyte
615(1)
10.11 Hydrogen oxygen fuel electrical cell
616(1)
10.12 Introduction of hybrid electric vehicles
617(1)
10.13 Polymer electrolyte fuel cells
618(1)
10.14 Microbial fuel cell
619(3)
10.14.1 History and evolution of the microbial fuel cells
619(1)
10.14.2 Working of microbial fuel cells
619(2)
10.14.3 Applications for microbial fuel cells
621(1)
10.15 Hydrogen generation
622(6)
10.15.1 Efficiency of entire process
623(1)
10.15.2 Derivation
624(1)
10.15.3 Free energy changes
625(1)
10.15.4 Determination of standard state free energy changes by using gibbs free energy
626(1)
10.15.5 Determination of standard state free energy changes by change in entropy and change in enthalpy
626(1)
10.15.6 Using equilibrium constants to determine the standard state free energy changes
626(1)
10.15.7 Using cell potentials to determine standard state free energy changes
626(1)
10.15.8 Helmholtz free energy
627(1)
10.16 Comparison of electrolysis and the fuel cell process
628(1)
10.17 Various fuel cell types and their operating characteristics
628(3)
10.18 Hydrogen basics
631(5)
10.18.1 The emergence of hydrogen based fuel
632(1)
10.18.2 Technological description
632(1)
10.18.3 Untapped potential
632(2)
10.18.4 Production of hydrogen
634(1)
10.18.5 Uses and applications of hydrogen
635(1)
10.18.6 Working of entire setup
635(1)
10.18.7 Thermochemical processes
636(1)
10.18.8 Electrolytic processes
636(1)
10.18.9 Biological processes
636(1)
10.19 Steam methane reforming
636(3)
10.20 Costs of hydrogen supply
639(9)
10.20.1 Hydrogen production cost analysis
640(1)
10.20.2 Hydrogen appearance and characteristics
640(1)
10.20.3 Uses and applications of hydrogen
641(1)
10.20.4 Characteristics and safety of hydrogen
641(1)
10.20.5 Hydrogen applications
642(1)
10.20.6 Liquid storage systems
643(1)
10.20.7 Gaseous storage systems
643(1)
10.20.8 Hydrogen basics storage
644(1)
10.20.9 Solid state hydrogen storage
644(2)
10.20.10 Benefits of hydrogen based energy resources
646(2)
10.21 Uses and applications of hydrogen
648(1)
10.21.1 Use of hydrogen in rocket fuels
648(1)
10.21.2 Hydrogen fuel cells produce electricity
648(1)
10.21.3 Hydrogen based motor vehicles
648(1)
10.22 The refuelling challenge
649(1)
10.23 Turbopumps for liquid rocket engines
650(1)
10.24 Engine requirements
651(1)
10.25 Gas generator cycle 65l
10.26 Gas hydrates
652(4)
10.26.1 Importance of gas hydrates
653(1)
10.26.2 Occurrence of methane hydrates
654(1)
10.26.3 Gas hydrates: an unconventional resource horizon
654(1)
10.26.4 Global reserves of gas hydrates
654(2)
10.27 Recent advances in fuel cell technology
656(1)
References
657(2)
Chapter 11 Hybrid energy and transmission systems 659(14)
11.1 Hybrid systems of energy
659(1)
11.2 Preference of hybrid energy resources
659(1)
11.2.1 The case for "hybrid" renewable energy systems
659(1)
11.2.2 Loop holes in the energy system
660(1)
11.3 Wind photovoltaic hybrid system
660(5)
11.3.1 Wind diesel hybrid systems
661(1)
11.3.2 Photovoltaic diesel hybrid system
662(3)
11.4 Hybrid electric vehicles
665(2)
11.4.1 Preferred use of electric vehicles
665(1)
11.4.2 A cleaner alternative
665(1)
11.4.3 Cost and savings
666(1)
11.4.4 Domestic energy independence
666(1)
11.5 Hydrogen fuel cell features
667(2)
11.5.1 Differences between fuel cell cars and other electric vehicles
668(1)
11.5.2 Emissions from hybrid and plug-in electric vehicles
668(1)
11.5.3 Electricity sources and emissions
669(1)
11.6 Compare electricity sources and annual vehicle emissions
669(1)
11.6.1 National averages
669(1)
11.6.2 Direct and well-to-wheel emissions
669(1)
11.7 Fuel cell electric vehicles
670(1)
11.7.1 Environmental benefits of fuel cell electric vehicles
670(1)
11.7.2 Mode of action of fuel cells
671(1)
11.8 Emerging technologies of hybrid energy systems
671(1)
References
672(1)
Chapter 12 Energy and global environment 673(82)
12.1 Climate change and energy transition
673(1)
12.2 Recent scenarios and pathways toward decarbonization
674(1)
12.3 Climate change and energy
675(4)
12.3.1 Climate change
675(1)
12.3.2 Important consequences of climate change
675(1)
12.3.3 Environmental effects
675(1)
12.3.4 Human impacts
675(1)
12.3.5 Energy efficiency and renewable energy
676(1)
12.3.6 Multidisciplinary nature of environmental science
676(1)
12.3.7 Scope of environmental studies
677(1)
12.3.8 Multidisciplinary nature of environmental studies
677(1)
12.3.9 Importance of environmental studies
678(1)
12.3.10 Components of an environment
679(1)
12.4 Biogeochemical cycles
679(9)
12.4.1 Carbon cycle
681(1)
12.4.2 Nitrogen cycle
681(2)
12.4.3 Hydrologic (water) cycle
683(2)
12.4.4 Phosphorous cycle
685(1)
12.4.5 Sulfur cycle
686(1)
12.4.6 Oxygen cycle
687(1)
12.5 Ecological pyramids
688(3)
12.5.1 Types
688(3)
12.6 Ecosystem
691(10)
12.6.1 Ecosystem goods and services
692(1)
12.6.2 Food chain and its types
692(1)
12.6.3 Food web: concept and applications
693(2)
12.6.4 Forest ecosystem
695(1)
12.6.5 Grassland ecosystem
696(1)
12.6.6 Desert ecosystem
696(1)
12.6.7 Mountains ecosystem
696(1)
12.6.8 Terrestrial ecosystem
696(1)
12.6.9 Aquatic ecosystem
697(1)
12.6.10 Glacier ecosystems
698(2)
12.6.11 Antarctic ecosystem
700(1)
12.6.12 Greenland ecosystem
701(1)
12.7 Global emissions by toxic gases
701(5)
12.7.1 Global emissions by economic sector
702(1)
12.7.2 Effects of air pollution
703(1)
12.7.3 Air pollution
704(1)
12.7.4 Acidification
705(1)
12.7.5 Eutrophication
705(1)
12.7.6 Ground level ozone
705(1)
12.7.7 Particulate matter
705(1)
12.8 Control measures
706(1)
12.8.1 Control measures in industrial centers
706(1)
12.9 Water pollution: an introduction
706(6)
12.9.1 Common inorganic pollutants of water
707(3)
12.9.2 Organic pollutants
710(1)
12.9.3 Total suspended solids
711(1)
12.9.4 Suspended matter
712(1)
12.10 Thermal pollution
712(4)
12.10.1 Sources of thermal pollution
712(2)
12.10.2 Hydroelectric power
714(1)
12.10.3 Thermal pollution in streams by human activities
714(1)
12.10.4 Radioactive isotopes
714(1)
12.10.5 Groundwater depletion
715(1)
12.10.6 Soil pollution
715(1)
12.10.7 Climate change
716(1)
12.11 Scientific evidence for warming of the climate system is unequivocal
716(8)
12.11.1 Intergovernmental panel on climate change
716(2)
12.11.2 Real impacts of climate change
718(1)
12.11.3 Causes of climate change
718(1)
12.11.4 Harmful effects of climate change
719(1)
12.11.5 Global warming versus climate change
719(1)
12.11.6 Adverse effects of global warming
720(4)
12.12 Sources of greenhouse gas emissions
724(6)
12.12.1 Global forest resource
724(1)
12.12.2 Importance of forest resources
725(1)
12.12.3 Uses of forest resources
726(1)
12.12.4 Functions of forests
726(1)
12.12.5 Productive functions of the forests
727(2)
12.12.6 Forest conservation acts of different countries
729(1)
12.13 Conservation of biodiversity
730(5)
12.13.1 Biological resources
730(2)
12.13.2 Ways to conserve energy
732(1)
12.13.3 Need for water management
732(2)
12.13.4 Remedial action related to release of hazardous substance law and legal definition
734(1)
12.14 Ecological succession
735(6)
12.14.1 Types of ecological succession
735(2)
12.14.2 Significance of ecological succession
737(1)
12.14.3 Biodiversity
738(1)
12.14.4 Genetic diversity
738(1)
12.14.5 Species diversity
738(1)
12.14.6 Ecosystem diversity
739(1)
12.14.7 Importance of biodiversity in environment
739(2)
12.15 Conservation of biodiversity
741(11)
12.15.1 Strategies for conservation of biodiversity
742(2)
12.15.2 Biodiversity hotspot
744(8)
12.16 Control strategies for conservation of environment
752(1)
References
753(2)
Index 755
Dr Hanif is an Assistant Professor & Group Leader at the Nano and Biomaterials lab within the Department of Chemistry at the University of Agriculture, Faisalabad, Pakistan. His work focuses on natural products and their analysis using advanced analytical chemistry, and he has published over 120 peer reviewed journal articles, 7 books/manuals and several book chapters. In addition, Dr Hanif has supervised over 40 M.Phil students and 3 PhD students. For outstanding contributions, he has made to the scientific development through the application of basic and applied scientific research particularly in the field of Chemical Sciences (Chemistry), and his unmatched services to community as the benchmark of excellence, the Pakistan Academy of Sciences has awarded him prestigious Gold Medal” in 2019. Farwa Nadeem has been working in capacity of environmentalist since last five years in international scientific organization. Her main task is to improve and protect the quality of natural environment. She is also working to overcome environmental changes harmful to human beings and other living organisms. She is educating people about green chemistry and environmental friendly chemical processes along with numerous industrial and agricultural activities. Exploration of alternative energy resources is another active field of her through comprehensive research at Department of Chemistry, University of Agriculture, Faisalabad-38040-Pakistan. Rida Tariq has been working as a green energy expert at the International Scientific Organization for last 3 years to improve the purity of the natural environment. Her major goal is to enhance the quality and quantity of several renewable energy resources for a sustainable future and spends time informing communities about the utilization of fully environmental friendly green energy resources and conservation of natural environment. Umer Rashid is working on analytical chemistry, industrial oil products, renewable energy resources and heterogeneous catalysts for production of least toxic biodiesels. He has research interests in the production and characterization of bio-lubricants, synthesis and characterization of heterogeneous catalysts, microwave technology and exploration of nonedible feedstocks for production of biodiesel. He has published 143 peer reviewed articles and has taught many courses related to green energy resources.