Atjaunināt sīkdatņu piekrišanu

Renewable Energy Systems: Advanced Conversion Technologies and Applications [Hardback]

(Nanyang Technological University, Singapore), (AnHui University, HeFei, China; Nanyang Technological University, Singapore)
  • Formāts: Hardback, 880 pages, height x width: 234x156 mm, weight: 1383 g, 150 Illustrations, black and white
  • Sērija : Industrial Electronics
  • Izdošanas datums: 07-Sep-2012
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1439891095
  • ISBN-13: 9781439891094
  • Hardback
  • Cena: 340,82 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 880 pages, height x width: 234x156 mm, weight: 1383 g, 150 Illustrations, black and white
  • Sērija : Industrial Electronics
  • Izdošanas datums: 07-Sep-2012
  • Izdevniecība: CRC Press Inc
  • ISBN-10: 1439891095
  • ISBN-13: 9781439891094
Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systemsincluding wind turbine and solar panel energy systems.

Learn Cutting-Edge Techniques for Converters and Inverters

Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduces more than 200 topologies of advanced converters originally developed by the authors, including 150 updated circuits on modern conversion technologies. It also discusses recently published topologies and thoroughly analyzes new converter circuits. Novel approaches include split-capacitor and split-inductor techniques that can be applied in super-lift and other converters.

Resolve Historic Problems in Conversion Technologies

Along with offering many cutting-edge techniques, the authors resolve some historic problems, such as the accurate determination of the conduction angle of single-phase rectifiers and power factor correction. They also describe a new seriesladdered multilevel invertersthat uses few devices to produce more levels, overcoming the drawbacks of the pulse-width-modulation (PWM) inverter and providing great scope for industrial applications.

Tap the Knowledge of Pioneers in the Field

This book is written by pioneers in advanced conversion technology who have created a large number of converters, including the world-renowned DC/DC Luo-converters and super-lift Luo-converters. Featuring numerous examples and diagrams, it guides readers in designing advanced converters for use in renewable energy systems.
Preface xxiii
Author xxvii
Chapter 1 Introduction
1(22)
1.1 Stars in the Universe
2(3)
1.2 Our Mercury Galaxy, Nebulae, and Black Hole
5(1)
1.3 Redshift and Big Bang
5(2)
1.4 Solar System
7(5)
1.5 The Earth
12(11)
1.5.1 The Earth Is Round
14(1)
1.5.2 Revolution and Rotation
14(2)
1.5.3 The Earth Is a Planet in the Solar System
16(1)
1.5.4 Layers of the Earth
17(1)
1.5.5 Chemical Composition of the Earth's Crust
18(1)
1.5.6 Water on the Earth
18(1)
1.5.7 Plates
19(1)
1.5.8 The Earth Is Very Fragile
20(1)
1.5.9 The Earth's Geological Age
20(1)
1.5.10 Protection of the Earth
20(1)
References
21(2)
Chapter 2 New Energy Sources
23(16)
2.1 Nuclear Fission
23(3)
2.1.1 Fission Process
23(1)
2.1.2 Chain Reactions
24(2)
2.2 Nuclear Fusion
26(5)
2.2.1 Fusion Process
27(1)
2.2.2 Hydrogen
28(1)
2.2.3 Fusion Reactions
29(1)
2.2.4 Hot Fusion
30(1)
2.3 Capture of Neutrino
31(5)
2.3.1 Neutrino
31(1)
2.3.2 Neutrino Sources
32(1)
2.3.2.1 Artificial
32(1)
2.3.2.2 Geological
32(1)
2.3.2.3 Atmospheric
33(1)
2.3.2.4 Solar
33(1)
2.3.2.5 By Supernovae
33(1)
2.3.2.6 By Supernova Remnants
34(1)
2.3.2.7 By the Big Bang
35(1)
2.3.3 Neutrino Detection
35(1)
2.4 Conclusion
36(3)
References
37(2)
Chapter 3 3G and Renewable Energies
39(10)
3.1 Distributed Generation
39(2)
3.1.1 Economies of Scale
39(1)
3.1.2 Localized Generation
40(1)
3.1.3 Distributed Energy Resources
40(1)
3.1.4 Cost Factors
41(1)
3.2 Microgrid
41(1)
3.3 Smart Grid
42(1)
3.4 Solar Energy
43(3)
3.5 Renewable Energy
46(3)
References
48(1)
Chapter 4 Power Electronics
49(30)
4.1 Symbols and Factors Used in This Book
49(23)
4.1.1 Symbols Used in Power Systems
49(2)
4.1.1.1 Summary of the Symbols
51(1)
4.1.2 Factors and Symbols Used in AC Power Systems
52(2)
4.1.2.1 Summary of the Symbols
54(1)
4.1.3 Factors and Symbols Used in DC Power Systems
55(1)
4.1.3.1 Summary of the Symbols
55(1)
4.1.4 Factors and Symbols Used in Switching Power Systems
56(2)
4.1.4.1 Summary of the Symbols
58(1)
4.1.5 Other Factors and Symbols
59(1)
4.1.5.1 Very Small Damping Time Constant
59(1)
4.1.5.2 Small Damping Time Constant
60(2)
4.1.5.3 Critical Damping Time Constant
62(1)
4.1.5.4 Large Damping Time Constant
62(2)
4.1.6 Fast Fourier Transform
64(1)
4.1.6.1 Central Symmetrical Periodical Function
65(1)
4.1.6.2 Axial (Mirror) Symmetrical Periodical Function
65(1)
4.1.6.3 Nonperiodical Function
65(1)
4.1.6.4 Useful Formulae and Data
66(1)
4.1.6.5 Examples of FFT Applications
67(5)
4.2 AC/DC Rectifiers
72(1)
4.2.1 Historic Problems
72(1)
4.2.2 Updated Circuits
73(1)
4.2.3 Power Factor Correction Methods
73(1)
4.3 DC/DC Converters
73(2)
4.3.1 Updated Converter
74(1)
4.3.2 New Concepts and Mathematical Modeling
74(1)
4.3.3 Power Rate Checking
74(1)
4.4 DC/AC Inverters
75(1)
4.4.1 Sorting Existing Inverters
76(1)
4.4.2 Updated Circuits
76(1)
4.4.3 Soft Switching Methods
76(1)
4.5 AC/AC Converters
76(1)
4.6 AC/DC/AC and DC/AC/DC Converters
77(2)
References
77(2)
Chapter 5 Uncontrolled AC/DC Converters
79(42)
5.1 Introduction
79(1)
5.2 Single-Phase Half-Wave Converters
80(18)
5.2.1 R Load
80(2)
5.2.2 R-L Load
82(3)
5.2.2.1 Graphical Method
85(1)
5.2.2.2 Iterative Method 1
86(1)
5.2.2.3 Iterative Method 2
87(1)
5.2.3 R-L Circuit with Freewheeling Diode
88(2)
5.2.4 An R-L Load Circuit with a Back emf
90(4)
5.2.4.1 Negligible Load-Circuit Inductance
94(1)
5.2.5 Single-Phase Half-Wave Rectifier with a Capacitive Filter
94(4)
5.3 Single-Phase Full-Wave Converters
98(9)
5.3.1 R Load
98(4)
5.3.2 R-C Load
102(3)
5.3.3 R-L Load
105(2)
5.4 Three-Phase Half-Wave Converters
107(3)
5.4.1 R Load
107(2)
5.4.2 R-L Load
109(1)
5.5 Six-Phase Half-Wave Converters
110(3)
5.5.1 Six-Phase with Neutral Line Circuit
110(1)
5.5.2 Double Antistar with Balance-Choke Circuit
111(2)
5.6 Three-Phase Full-Wave Converters
113(1)
5.7 Multiphase Full-Wave Converters
113(8)
5.7.1 Six-Phase Full-Wave Diode Rectifiers
113(3)
5.7.2 Six-Phase Double-Bridge Full-Wave Diode Rectifiers
116(2)
5.7.3 Six-Phase Double-Transformer Double-Bridge Full-Wave Diode Rectifiers
118(1)
5.7.4 Six-Phase Triple-Transformer Double-Bridge Full-Wave Diode Rectifiers
119(1)
References
119(2)
Chapter 6 Controlled AC/DC Converters
121(32)
6.1 Introduction
121(1)
6.2 Single-Phase Halt-Wave Controlled Converters
121(7)
6.2.1 R Load
122(1)
6.2.2 R-L Load
123(3)
6.2.3 R-L Load Plus Back emf Vc
126(2)
6.3 Single-Phase Full-Wave Controlled Converters
128(4)
6.3.1 α > φ, Discontinuous Load Current
129(3)
6.3.2 α = φ, Verge of Continuous Load Current
132(1)
6.3.3 α < φ, Continuous Load Current
132(1)
6.4 Three-Phase Half-Wave Controlled Rectifiers
132(5)
6.4.1 An R Load Circuit
133(2)
6.4.2 An R-L Load Circuit
135(2)
6.5 Six-Phase Half-Wave Controlled Rectifiers
137(3)
6.5.1 Six-Phase with Neutral Line Circuit
137(2)
6.5.2 Double Antistar with Balance-Choke Circuit
139(1)
6.6 Three-Phase Full-Wave Controlled Converters
140(3)
6.7 Multi-Phase Full-Wave Controlled Converters
143(4)
6.8 Effect of Line Inductance on Output Voltage (Overlap)
147(6)
References
150(3)
Chapter 7 Power Factor Correction Implementing in AC/DC Converters
153(50)
7.1 Introduction
153(1)
7.2 DC/DC Converterized Rectifiers
154(7)
7.3 PWM Boost-Type Rectifiers
161(7)
7.3.1 DC-Side PWM Boost-Type Rectifier
163(1)
7.3.1.1 Constant-Frequency Control
163(1)
7.3.1.2 Constant-Tolerance-Band (Hysteresis) Control
163(3)
7.3.2 Source-Side PWM Boost-Type Rectifiers
166(2)
7.4 Tapped-Transformer Converters
168(3)
7.5 Single-Stage Power Factor Correction AC/DC Converters
171(10)
7.5.1 Operating Principles
174(2)
7.5.2 Mathematical Model Derivation
176(1)
7.5.2.1 Averaged Model over One Switching Period Ts
176(1)
7.5.2.2 Averaged Model over One Half Line Period TL
177(3)
7.5.3 Simulation Results
180(1)
7.5.4 Experimental Results
181(1)
7.6 VIENNA Rectifiers
181(22)
7.6.1 Circuit Analysis and Principle of Operation
186(3)
7.6.2 Proposed Control Arithmetic
189(2)
7.6.3 Block Diagram of the Proposed Controller for VIENNA Rectifier
191(2)
7.6.4 Converter Design and Simulation Result
193(2)
7.6.5 Experimental Results
195(6)
References
201(2)
Chapter 8 Classical DC/DC Converters
203(46)
8.1 Introduction
203(2)
8.2 Fundamental Converters
205(11)
8.2.1 Buck Converter
205(1)
8.2.1.1 Voltage Relations
205(3)
8.2.1.2 Circuit Currents
208(1)
8.2.1.3 Continuous Current Condition (Continuous Conduction Mode)
209(1)
8.2.1.4 Capacitor Voltage Ripple
209(1)
8.2.2 Boost Converter
210(1)
8.2.2.1 Voltage Relations
210(2)
8.2.2.2 Circuit Currents
212(1)
8.2.2.3 Continuous Current Condition
213(1)
8.2.2.4 Output Voltage Ripple
213(1)
8.2.3 Buck-Boost Converter
213(1)
8.2.3.1 Voltage and Current Relations
213(1)
8.2.3.2 CCM Operation and Circuit Currents
214(2)
8.3 Positive Output Buck-Boost Converter
216(4)
8.3.1 Buck Operation Mode
217(1)
8.3.2 Boost Operation Mode
218(1)
8.3.3 Buck-Boost Operation Mode
218(1)
8.3.4 Operation Control
218(2)
8.4 Transformer-Type Converters
220(10)
8.4.1 Forward Converter
220(2)
8.4.1.1 Fundamental Forward Converter
222(4)
8.4.1.2 Forward Converter with Tertiary Winding
226(1)
8.4.1.3 Switch Mode Power Supplies with Multiple Outputs
226(1)
8.4.2 Fly-Back Converter
226(1)
8.4.3 Push-Pull Converter
227(1)
8.4.4 Half-Bridge Converter
228(1)
8.4.5 Bridge Converter
228(2)
8.4.6 Zeta Converter
230(1)
8.5 Developed Converters
230(15)
8.5.1 Positive Output Luo Converter (Elementary Circuit)
231(6)
8.5.2 Negative Output Luo Converter (Elementary Circuit)
237(2)
8.5.3 Double Output Luo Converter (Elementary Circuit)
239(1)
8.5.4 Cuk Converter
240(3)
8.5.5 Single-Ended Primary Inductance Converter
243(2)
8.6 Tapped-Inductor Converters
245(4)
References
247(2)
Chapter 9 Voltage Lift Converters
249(128)
9.1 Introduction
249(1)
9.2 Seven Self-Lift Converters
250(28)
9.2.1 Self-Lift Cuk Converter
252(1)
9.2.1.1 Continuous Conduction Mode
252(3)
9.2.1.2 Discontinuous Conduction Mode
255(3)
9.2.2 Self-Lift P/O Luo Converter
258(1)
9.2.2.1 Continuous Conduction Mode
259(1)
9.2.2.2 Discontinuous Conduction Mode
260(2)
9.2.3 Reverse Self-Lift P/O Luo Converter
262(1)
9.2.3.1 Continuous Conduction Mode
262(2)
9.2.3.2 Discontinuous Conduction Mode
264(2)
9.2.4 Self-Lift N/O Luo Converter
266(1)
9.2.4.1 Continuous Conduction Mode
266(1)
9.2.4.2 Discontinuous Conduction Mode
267(1)
9.2.5 Reverse Self-Lift N/O Luo Converter
268(1)
9.2.5.1 Continuous Conduction Mode
268(3)
9.2.5.2 Discontinuous Conduction Mode
271(1)
9.2.6 Self-Lift SEPIC
272(1)
9.2.6.1 Continuous Conduction Mode
272(3)
9.2.6.2 Discontinuous Conduction Mode
275(1)
9.2.7 Enhanced Self-Lift P/O Luo Converter
276(2)
9.3 P/O Luo Converters
278(17)
9.3.1 Re-Lift Circuit
278(7)
9.3.2 Triple-Lift Circuit
285(3)
9.3.3 Quadruple-Lift Circuit
288(4)
9.3.4 Summary
292(3)
9.4 N/O Luo Converters
295(13)
9.4.1 Re-Lift Circuit
295(5)
9.4.2 N/O Triple-Lift Circuit
300(3)
9.4.3 N/O Quadruple-Lift Circuit
303(2)
9.4.4 Summary
305(3)
9.5 Modified P/O Luo Converters
308(7)
9.5.1 Self-Lift Circuit
308(3)
9.5.2 Re-Lift Circuit
311(2)
9.5.3 Multilift Circuit
313(2)
9.6 Double-Output Luo Converters
315(28)
9.6.1 Self-Lift Circuit
316(1)
9.6.1.1 Positive Conversion Path
316(2)
9.6.1.2 Negative Conversion Path
318(3)
9.6.1.3 Discontinuous Conduction Mode
321(1)
9.6.2 Re-Lift Circuit
322(1)
9.6.2.1 Positive Conversion Path
322(3)
9.6.2.2 Negative Conversion Path
325(2)
9.6.2.3 Discontinuous Conduction Mode
327(2)
9.6.3 Triple-Lift Circuit
329(1)
9.6.3.1 Positive Conversion Path
330(1)
9.6.3.2 Negative Conversion Path
331(1)
9.6.3.3 Discontinuous Mode
332(2)
9.6.4 Quadruple-Lift Circuit
334(1)
9.6.4.1 Positive Conversion Path
335(1)
9.6.4.2 Negative Conversion Path
336(1)
9.6.4.3 Discontinuous Conduction Mode
337(2)
9.6.5 Summary
339(1)
9.6.5.1 Positive Conversion Path
339(1)
9.6.5.2 Negative Conversion Path
340(1)
9.6.5.3 Common Parameters
341(2)
9.7 Voltage-Lift Cuk Converters
343(5)
9.7.1 Elementary Self-Lift Cuk Circuit
343(1)
9.7.2 Developed Self-Lift Cuk Circuit
344(1)
9.7.3 Re-Lift Cuk Circuit
344(1)
9.7.4 Multiple-Lift Cuk Circuit
345(1)
9.7.5 Simulation and Experimental Verification of Elementary and Developed Self-Lift Circuits
346(2)
9.8 Voltage-Lift SEPICs
348(4)
9.8.1 Self-Lift SEPIC
348(1)
9.8.2 Re-Lift SEPIC
349(1)
9.8.3 Multiple-Lift SEPICs
350(1)
9.8.4 Simulation and Experimental Results of a Re-Lift SEPIC
351(1)
9.9 Other Double-Output Voltage-Lift Converters
352(5)
9.9.1 Elementary Circuit
352(1)
9.9.2 Self-Lift Double-Output Circuit
353(1)
9.9.3 Enhanced Series Double-Output Circuits
354(2)
9.9.4 Simulation and Experimental Verification of an Enhanced Double-Output Self-Lift Circuit
356(1)
9.10 Switched-Capacitorized Converters
357(20)
9.10.1 One-Stage Switched-Capacitorized Buck Converter
360(1)
9.10.1.1 Operation Analysis
360(1)
9.10.1.2 Simulation and Experimental Results
361(1)
9.10.2 Two-Stage Switched-Capacitorized Buck-Boost Converter
362(1)
9.10.2.1 Operation Analysis
363(1)
9.10.2.2 Simulation and Experimental Results
363(1)
9.10.3 Three-Stage Switched-Capacitorized P/O Luo Converter
364(1)
9.10.3.1 Operation Analysis
365(1)
9.10.3.2 Simulation and Experimental Results
365(1)
9.10.4 Three-Stage Switched-Capacitorized N/O Luo Converter
366(1)
9.10.4.1 Operation Analysis
366(1)
9.10.4.2 Simulation and Experimental Results
367(1)
9.10.5 Discussion
368(1)
9.10.5.1 Voltage Drop across the Switched Capacitors
368(1)
9.10.5.2 Necessity of the Voltage Drop across the Switched Capacitors and Energy Transfer
369(1)
9.10.5.3 Inrush Input Current
370(1)
9.10.5.4 Power Switch-on Process
370(1)
9.10.5.5 Suppression of the Inrush and Surge Input Current
370(3)
References
373(4)
Chapter 10 Super-Lift Converters and Ultra-Lift Converters
377(140)
10.1 Introduction
377(1)
10.2 P/O SL Luo Converters
377(33)
10.2.1 Main Series
378(1)
10.2.1.1 Elementary Circuit
378(3)
10.2.1.2 Re-Lift Circuit
381(1)
10.2.1.3 Triple-Lift Circuit
382(1)
10.2.1.4 Higher-Order Lift-Circuit
383(1)
10.2.2 Additional Series
384(1)
10.2.2.1 Elementary Additional Circuit
384(2)
10.2.2.2 Re-Lift Additional Circuit
386(2)
10.2.2.3 Triple-Lift Additional Circuit
388(2)
10.2.2.4 Higher-Order-Lift Additional Circuit
390(1)
10.2.3 Enhanced Series
390(1)
10.2.3.1 Elementary Enhanced Circuit
391(1)
10.2.3.2 Re-Lift Enhanced Circuit
391(2)
10.2.3.3 Triple-Lift Enhanced Circuit
393(2)
10.2.3.4 Higher-Order-Lift Enhanced Circuit
395(1)
10.2.4 Re-Enhanced Series
395(1)
10.2.4.1 Elementary Re-Enhanced Circuit
396(3)
10.2.4.2 Re-Lift Re-Enhanced Circuit
399(1)
10.2.4.3 Triple-Lift Re-Enhanced Circuit
400(1)
10.2.4.4 Higher-Order-Lift Re-Enhanced Circuit
401(1)
10.2.5 Multiple-(j)Enhanced Series
402(1)
10.2.5.1 Elementary Multiple-Enhanced Circuit
403(2)
10.2.5.2 Re-Lift Multiple-(j)Enhanced Circuit
405(1)
10.2.5.3 Triple-Lift Multiple(j)-Enhanced Circuit
406(1)
10.2.5.4 Higher-Order-Lift Multiple-Enhanced Circuit
407(1)
10.2.6 Summary of P/O SL Luo Converters
408(2)
10.3 N/O SL Luo Converters
410(33)
10.3.1 Main Series
411(1)
10.3.1.1 N/O Elementary Circuit
411(3)
10.3.1.2 N/O Re-Lift Circuit
414(2)
10.3.1.3 N/O Triple-Lift Circuit
416(1)
10.3.1.4 N/O Higher-Order-Lift Circuit
417(1)
10.3.2 N/O Additional Series
418(1)
10.3.2.1 N/O Elementary Additional Circuit
418(3)
10.3.2.2 N/O Re-Lift Additional Circuit
421(1)
10.3.2.3 Triple-Lift Additional Circuit
422(2)
10.3.2.4 N/O Higher-Order-Lift Additional Circuit
424(1)
10.3.3 Enhanced Series
425(1)
10.3.3.1 N/O Elementary Enhanced Circuit
425(1)
10.3.3.2 N/O Re-Lift Enhanced Circuit
425(3)
10.3.3.3 N/O Triple-Lift Enhanced Circuit
428(2)
10.3.3.4 N/O Higher-Order-Lift Enhanced Circuit
430(1)
10.3.4 Re-Enhanced Series
430(1)
10.3.4.1 N/O Elementary Re-Enhanced Circuit
430(4)
10.3.4.2 N/O Re-Lift Re-Enhanced Circuit
434(1)
10.3.4.3 N/O Triple-Lift Re-Enhanced Circuit
434(1)
10.3.4.4 N/O Higher-Order-Lift Re-Enhanced Circuit
435(1)
10.3.5 N/O Multiple-Enhanced Series
436(1)
10.3.5.1 N/O Elementary Multiple-Enhanced Circuit
436(1)
10.3.5.2 N/O Re-Lift Multiple-Enhanced Circuit
437(3)
10.3.5.3 N/O Triple-Lift Multiple-Enhanced Circuit
440(1)
10.3.5.4 N/O Higher-Order-Lift Multiple-Enhanced Circuit
441(1)
10.3.6 Summary of N/O SL Luo Converters
441(2)
10.4 P/O Cascaded Boost Converters
443(29)
10.4.1 Main Series
443(1)
10.4.1.1 Elementary Boost Circuit
444(1)
10.4.1.2 Two-Stage Boost Circuit
445(2)
10.4.1.3 Three-Stage Boost Circuit
447(2)
10.4.1.4 Higher-Stage Boost Circuit
449(1)
10.4.2 Additional Series
449(1)
10.4.2.1 Elementary Boost Additional (Double) Circuit
449(3)
10.4.2.2 Two-Stage Boost Additional Circuit
452(1)
10.4.2.3 Three-Stage Boost Additional Circuit
453(2)
10.4.2.4 Higher-Stage Boost Additional Circuit
455(1)
10.4.3 Double Series
455(1)
10.4.3.1 Elementary Double-Boost Circuit
455(3)
10.4.3.2 Two-Stage Double-Boost Circuit
458(1)
10.4.3.3 Three-Stage Double-Boost Circuit
459(1)
10.4.3.4 Higher-Stage Double-Boost Circuit
460(1)
10.4.4 Triple Series
461(1)
10.4.4.1 Elementary Triple-Boost Circuit
461(2)
10.4.4.2 Two-Stage Triple-Boost Circuit
463(1)
10.4.4.3 Three-Stage Triple-Boost Circuit
464(2)
10.4.4.4 Higher-Stage Triple-Boost Circuit
466(1)
10.4.5 Multiple Series
466(1)
10.4.5.1 Elementary Multiple-Boost Circuit
466(1)
10.4.5.2 Two-Stage Multiple-Boost Circuit
467(3)
10.4.5.3 Three-Stage Multiple-Boost Circuit
470(1)
10.4.5.4 Higher-Stage Multiple-Boost Circuit
470(1)
10.4.6 Summary of P/O Cascaded Boost Converters
471(1)
10.5 N/O Cascaded Boost Converters
472(30)
10.5.1 Main Series
472(1)
10.5.1.1 N/O Elementary Boost Circuit
473(2)
10.5.1.2 N/O Two-Stage Boost Circuit
475(2)
10.5.1.3 N/O Three-Stage Boost Circuit
477(1)
10.5.1.4 N/O Higher-Stage Boost Circuit
478(1)
10.5.2 N/O Additional Series
478(1)
10.5.2.1 N/O Elementary Additional Boost Circuit
478(3)
10.5.2.2 N/O Two-Stage Additional Boost Circuit
481(2)
10.5.2.3 N/O Three-Stage Additional Boost Circuit
483(1)
10.5.2.4 N/O Higher-Stage Additional Boost Circuit
484(1)
10.5.3 Double Series
485(1)
10.5.3.1 N/O Elementary Double-Boost Circuit
485(1)
10.5.3.2 N/O Two-Stage Double-Boost Circuit
486(2)
10.5.3.3 N/O Three-Stage Double-Boost Circuit
488(1)
10.5.3.4 N/O Higher-Stage Double-Boost Circuit
489(1)
10.5.4 Triple Series
490(1)
10.5.4.1 N/O Elementary Triple-Boost Circuit
490(2)
10.5.4.2 N/O Two-Stage Triple-Boost Circuit
492(1)
10.5.4.3 N/O Three-Stage Triple-Boost Circuit
493(2)
10.5.4.4 N/O Higher-Stage Triple-Boost Circuit
495(1)
10.5.5 Multiple Series
495(1)
10.5.5.1 N/O Elementary Multiple-Boost Circuit
496(2)
10.5.5.2 N/O Two-Stage Multiple-Boost Circuit
498(1)
10.5.5.3 N/O Three-Stage Multiple-Boost Circuit
499(1)
10.5.5.4 N/O Higher-Stage Multiple-Boost Circuit
500(1)
10.5.6 Summary of N/O Cascaded Boost Converters
501(1)
10.6 Ultra-Lift Luo Converter
502(15)
10.6.1 Operation of Ultra-Lift Luo Converter
503(1)
10.6.1.1 Continuous Conduction Mode
504(4)
10.6.1.2 Discontinuous Conduction Mode
508(2)
10.6.2 Instantaneous Values
510(1)
10.6.2.1 Continuous Conduction Mode
510(2)
10.6.2.2 Discontinuous Conduction Mode
512(1)
10.6.3 Comparison of the Gains between Ultra-Lift Luo Converter and Other Converters
513(1)
10.6.4 Simulation Results
513(1)
10.6.5 Experimental Results
514(1)
10.6.6 Summary
515(1)
References
516(1)
Chapter 11 Split-Capacitor and Split-Inductor Techniques and Their Application in Positive-Output Super-Lift Luo Converters
517(20)
11.1 Introduction
517(1)
11.2 Split Capacitors
518(1)
11.3 Split Inductors
519(1)
11.4 Split Capacitors and Split Inductors Applied in the Positive-Output Elementary Super-Lift Luo Converter
520(3)
11.4.1 Two-Split Capacitors (α=2) Applied in the P/O Elementary SL Circuit
520(1)
11.4.2 Two Split Inductors (β=2) Applied in the Elementary P/O SL Circuit
521(1)
11.4.3 α-Split Capacitors and β-Split Inductors Applied in the Elementary P/O SL Circuit
522(1)
11.5 Main Series
523(1)
11.6 MEC, Split Capacitors Used in Double/Enhanced Circuit
524(1)
11.7 Additional Series
525(4)
11.7.1 Elementary Additional Circuit
526(2)
11.7.2 Re-Lift Additional Circuit
528(1)
11.7.3 Triple-Lift Additional Circuit
528(1)
11.7.4 Higher-Order Lift Additional Circuits
529(1)
11.8 Higher-Order Series
529(3)
11.8.1 Enhanced Series
530(1)
11.8.2 Re-Enhanced Series
530(1)
11.8.3 Multiple (j)-Enhanced Series
531(1)
11.9 Summary of P/O Super-Lift Luo Converters Applying Split Capacitors and Split Inductors
532(1)
11.10 Simulation Results
533(1)
11.10.1 Simulation Results of a Re-Lift Circuit
534(1)
11.10.2 Simulation Results of a Re-Lift Additional Circuit
534(1)
11.11 Experimental Results
534(3)
11.11.1 Experimental Results of a Re-Lift Circuit
534(1)
11.11.2 Experimental Results of a Re-Lift Additional Circuit
535(1)
References
536(1)
Chapter 12 Pulse-Width-Modulated DC/AC Inverters
537(44)
12.1 Introduction
537(1)
12.2 Parameters Used in PWM Operation
538(6)
12.2.1 Modulation Ratios
538(2)
12.2.1.1 Linear Range (ma ≤ 1.0)
540(1)
12.2.1.2 Overmodulation (1.0 < ma ≤ 1.27)
541(1)
12.2.1.3 Square Wave (Sufficiently Large ma > 1.27)
541(1)
12.2.1.4 Small mf (mf ≤ 21)
542(1)
12.2.1.5 Large mf (mf > 21)
542(2)
12.2.2 Harmonic Parameters
544(1)
12.3 Typical PWM Inverters
544(1)
12.3.1 Voltage Source Inverter
544(1)
12.3.2 Current Source Inverter
545(1)
12.3.3 Impedance Source Inverter (z-Source Inverter)
545(1)
12.3.4 Circuits of DC/AC Inverters
545(1)
12.4 Single-Phase Voltage Source Inverter
545(7)
12.4.1 Single-Phase Half-Bridge VSI
545(4)
12.4.2 Single-Phase Full-Bridge VSI
549(3)
12.5 Three-Phase Full-Bridge Voltage Source Inverter
552(1)
12.6 Three-Phase Full-Bridge Current Source Inverter
552(1)
12.7 Multistage PWM Inverter
552(5)
12.7.1 Unipolar PWM VSI
552(5)
12.7.2 Multicell PWM VSI
557(1)
12.7.3 Multilevel PWM Inverter
557(1)
12.8 Impedance-Source Inverters
557(10)
12.8.1 Comparison with VSI and CSI
558(5)
12.8.2 Equivalent Circuit and Operation
563(2)
12.8.3 Circuit Analysis and Calculations
565(2)
12.9 Extended Boost z-Source Inverters
567(14)
12.9.1 Introduction to ZSI and Basic Topologies
568(1)
12.9.2 Extended Boost qZSI Topologies
569(1)
12.9.2.1 Diode-Assisted Extended Boost qZSI Topologies
570(3)
12.9.2.2 Capacitor-Assisted Extended
Boost qZSI Topologies
573(3)
12.9.3 Simulation Results
576(4)
References
580(1)
Chapter 13 Multilevel and Soft-Switching DC/AC Inverters
581(62)
13.1 Introduction
581(3)
13.2 Diode-Clamped (Neutral-Point-Clamped) Multilevel Inverters
584(5)
13.3 Capacitor-Clamped (Flying Capacitor) Multilevel Inverters
589(2)
13.4 Multilevel Inverters Using H-Bridges Converters
591(3)
13.4.1 Cascaded Equalvoltage Multilevel Inverters
592(1)
13.4.2 Binary Hybrid Multilevel Inverter
593(1)
13.4.3 Quasi-Linear Multilevel Inverter
594(1)
13.4.4 Trinary Hybrid Multilevel Inverter
594(1)
13.5 Other Kinds of Multilevel Inverters
594(3)
13.5.1 Generalized Multilevel Inverters
595(1)
13.5.2 Mixed-Level Multilevel Inverter Topologies
595(1)
13.5.3 Multilevel Inverters by Connection of Three-Phase Two-Level Inverters
596(1)
13.6 Soft-Switching Multilevel Inverters
597(46)
13.6.1 Notched DC Link Inverters for Brushless DC Motor Drive
597(2)
13.6.1.1 Resonant Circuit
599(4)
13.6.1.2 Design Consideration
603(1)
13.6.1.3 Control Scheme
604(4)
13.6.1.4 Simulation and Experimental Results
608(2)
13.6.2 Resonant Pole Inverter
610(2)
13.6.2.1 Topology of the Resonant Pole Inverter
612(2)
13.6.2.2 Operation Principle
614(4)
13.6.2.3 Design Considerations
618(3)
13.6.2.4 Simulation and Experimental Results
621(4)
13.6.3 Transformer-Based Resonant DC Link Inverter
625(1)
13.6.3.1 Resonant Circuit
626(6)
13.6.3.2 Design Consideration
632(3)
13.6.3.3 Control Scheme
635(2)
13.6.3.4 Simulation and Experimental Results
637(3)
References
640(3)
Chapter 14 Advanced Multilevel DC/AC Inverters Used in Solar Panel Energy Systems
643(32)
14.1 Introduction
643(1)
14.2 Progressions (Series)
644(4)
14.2.1 Arithmetical Progressions
644(1)
14.2.1.1 Unit Progression
645(1)
14.2.1.2 Natural Number Progression
645(1)
14.2.1.3 Odd Number Progression
645(1)
14.2.2 Geometric Progressions
645(1)
14.2.2.1 Binary Progression
646(1)
14.2.2.2 Trinary Number Progression
646(1)
14.2.3 Special Progressions
647(1)
14.2.3.1 Luo-Progression
647(1)
14.2.3.2 Ye-Progression
647(1)
14.3 Laddered Multilevel DC/AC Inverters
648(9)
14.3.1 Special Switches
648(1)
14.3.1.1 Toggle Switch
648(1)
14.3.1.2 Changeover Switch
648(1)
14.3.1.3 Band Switch
649(1)
14.3.2 General Circuit of Laddered Inverters
649(1)
14.3.3 Linear Ladder Inverters
650(1)
14.3.4 Natural Number Ladder Inverters
651(1)
14.3.5 Odd Number Ladder Inverters
652(1)
14.3.6 Binary Ladder Inverters
652(1)
14.3.7 Modified Binary Ladder Inverters
653(1)
14.3.8 Luo-Progression Ladder Inverters
654(1)
14.3.9 Ye-Progression Ladder Inverters
655(1)
14.3.10 Trinary Ladder Inverters
656(1)
14.4 Comparison of All Laddered Inverters
657(1)
14.5 Solar Panel Energy Systems
657(2)
14.6 Simulation and Experimental Results
659(1)
14.7 Switched-Capacitor Multilevel DC/AC Inverters
659(8)
14.7.1 Switched Capacitor Used in Multilevel DC/AC Inverters
663(1)
14.7.1.1 Five-Level SC Inverter
663(1)
14.7.1.2 Nine-Level SC Inverter
664(1)
14.7.1.3 Fifteen-Level SC Inverter
665(1)
14.7.1.4 Higher-Level SC Inverter
666(1)
14.7.2 Simulation and Experimental Results
667(1)
14.8 Super-Lift Converter Multilevel DC/AC Inverters
667(8)
14.8.1 Some P/O Super-Lift Luo-Converters
667(1)
14.8.2 Super-Lift Converters Used in Multilevel DC/AC Inverters
668(1)
14.8.2.1 Seven-Level SL Inverter
669(1)
14.8.2.2 Fifteen-Level SL Inverter
669(1)
14.8.2.3 Twenty-One-Level SL Inverter
670(2)
14.8.2.4 Higher-Level SL Inverter
672(1)
14.8.3 Simulation and Experimental Results
672(1)
References
672(3)
Chapter 15 Traditional AC/AC Converters
675(54)
15.1 Introduction
675(1)
15.2 Single-Phase AC/AC Voltage-Regulation Converters
676(12)
15.2.1 Phase-Controlled Single-Phase AC/AC Voltage Controller
677(1)
15.2.1.1 Operation with R-Load
678(1)
15.2.1.2 Operation with RL Load
679(4)
15.2.1.3 Gating Signal Requirements
683(1)
15.2.1.4 Operation with α < φ
684(1)
15.2.1.5 Power Factor and Harmonics
684(1)
15.2.2 Single-Phase AC/AC Voltage Controller with On/Off Control
684(1)
15.2.2.1 Integral Cycle Control
684(2)
15.2.2.2 PWM AC Chopper
686(2)
15.3 Three-Phase AC/AC Voltage-Regulation Converters
688(6)
15.3.1 Phase-Controlled Three-Phase AC Voltage Controllers
688(2)
15.3.2 Fully Controlled Three-Phase Three-Wire AC Voltage Controller
690(1)
15.3.2.1 Star-Connected Load with Isolated Neutral
690(2)
15.3.2.2 RL Load
692(1)
15.3.2.3 Delta-Connected R-Load
693(1)
15.4 Cycloconverters
694(24)
15.4.1 Single-Phase Input/Single-Phase Output Cycloconverter
696(1)
15.4.1.1 Operation with R Load
697(4)
15.4.1.2 Operation with RL Load
701(1)
15.4.2 Three-Phase Cycloconverters
702(1)
15.4.2.1 Three-Phase Three-Pulse Cycloconverter
702(5)
15.4.2.2 Three-Phase Six-Pulse and Twelve-Pulse Cycloconverter
707(1)
15.4.3 Cycloconverter Control Scheme
707(3)
15.4.3.1 Control Circuit Block Diagram
710(3)
15.4.3.2 Improved Control Schemes
713(1)
15.4.4 Cycloconverter Harmonics and Input Current Waveform
713(1)
15.4.4.1 Circulating-Current-Free Operations
713(1)
15.4.4.2 Circulating-Current Operation
714(1)
15.4.4.3 Other Harmonics Distortion Terms
715(1)
15.4.4.4 Input Current Waveform
715(1)
15.4.5 Cycloconverter Input Displacement/Power Factor
715(1)
15.4.6 Effects of Source Impedance
716(1)
15.4.7 Simulation Analysis of Cycloconverter Performance
716(1)
15.4.8 Forced-Commutated Cycloconverter
716(2)
15.5 Matrix Converters
718(11)
15.5.1 Operation and Control Methods of the Matrix Converter
721(1)
15.5.1.1 Venturini Method
721(2)
15.5.1.2 SVM Method
723(1)
15.5.1.3 Control Implementation and Comparison of the Two Methods
724(1)
15.5.2 Commutation and Protection Issues in a Matrix Converter
724(2)
References
726(3)
Chapter 16 Improved AC/AC Converters
729(64)
16.1 DC-Modulated Single-Stage AC/AC Converters
729(27)
16.1.1 Bidirectional Exclusive Switches SM-SS
731(2)
16.1.2 Mathematical Modeling for DC/DC Converters
733(3)
16.1.3 DC-Modulated Single-Stage Buck-Type AC/AC Converter
736(1)
16.1.3.1 Positive Input Voltage Half-Cycle
736(1)
16.1.3.2 Negative Input Voltage Half-Cycle
737(1)
16.1.3.3 Whole-Cycle Operation
738(1)
16.1.3.4 Simulation and Experimental Results
738(2)
16.1.4 DC-Modulated Single-Stage Boost-Type AC/AC Converter
740(5)
16.1.4.1 Positive Input Voltage Half-Cycle
745(1)
16.1.4.2 Negative Input Voltage Half-Cycle
746(1)
16.1.4.3 Whole-Cycle Operation
747(1)
16.1.4.4 Simulation and Experimental Results
747(1)
16.1.5 DC-Modulated Single-Stage Buck-Boost-Type AC/AC Converter
748(1)
16.1.5.1 Positive Input Voltage Half-Cycle
749(1)
16.1.5.2 Negative Input Voltage Half-Cycle
749(3)
16.1.5.3 Whole-Cycle Operation
752(2)
16.1.5.4 Simulation and Experimental Results
754(2)
16.2 Other Types of DC-Modulated AC/AC Converters
756(8)
16.2.1 DC-Modulated Positive Output Luo-Converter-Type AC/AC Converter
757(6)
16.2.2 DC-Modulated Two-Stage Boost-Type AC/AC Converter
763(1)
16.3 DC-Modulated Multiphase AC/AC Converters
764(1)
16.3.1 DC-Modulated Three-Phase Buck-Type AC/AC Converter
764(1)
16.3.2 DC-Modulated Three-Phase Boost-Type AC/AC Converter
764(1)
16.3.3 DC-Modulated Three-Phase Buck-Boost-Type AC/AC Converter
764(1)
16.4 Sub-Envelope Modulation Method to Reduce THD of AC/AC Matrix Converters
765(28)
16.4.1 Sub-Envelope Modulation Method
770(2)
16.4.1.1 Measure the Input Instantaneous Voltage
772(1)
16.4.1.2 Modulation Algorithm
773(3)
16.4.1.3 Improve Voltage Ratio
776(1)
16.4.2 Twenty-Four-Switches Matrix Converter
777(3)
16.4.3 Current Commutation
780(1)
16.4.3.1 Current Commutation between Two Input Phases
780(1)
16.4.3.2 Current-Commutation-Related Three Input Phases
781(3)
16.4.4 Simulation and Experimental Results
784(1)
16.4.4.1 Simulation Results
784(1)
16.4.4.2 Experimental Results
785(4)
References
789(4)
Chapter 17 AC/DC/AC and DC/AC/DC Converters
793(20)
17.1 Introduction
793(1)
17.2 AC/DC/AC Converters Used in Wind Turbine Systems
794(7)
17.2.1 Review of Traditional AC/AC Converters
796(1)
17.2.2 New AC/DC/AC Converters
796(1)
17.2.2.1 AC/DC/AC Boost-Type Converter
796(2)
17.2.2.2 Three-Level Diode-Clamped AC/DC/AC Converter
798(2)
17.2.3 Wind Turbine System Linking to Utility Network
800(1)
17.3 DC/AC/DC Converters
801(12)
17.3.1 Review of Traditional DC/DC Converters
801(2)
17.3.2 Chopper-Type DC/AC/DC Converters
803(1)
17.3.3 Switched-Capacitor DC/AC/DC Converters
804(1)
17.3.3.1 Single-Stage Switched-Capacitor DC/AC/DC Converter
805(2)
17.3.3.2 Three-Stage Switched-Capacitor DC/AC/DC Converter
807(3)
17.3.3.3 Four-Stage Switched-Capacitor DC/AC/DC Converter
810(2)
References
812(1)
Chapter 18 Designs of Solar Panel and Wind Turbine Energy Systems
813(22)
18.1 Introduction
813(2)
18.2 Wind Turbine Energy Systems
815(11)
18.2.1 Technical Features
816(4)
18.2.2 Design Example
820(4)
18.2.3 Converters' Design
824(1)
18.2.4 Simulation Results
825(1)
18.3 Solar Panel Energy Systems
826(9)
18.3.1 Technical Features
827(1)
18.3.2 P/O Super-Lift Luo Converter
827(1)
18.3.3 Closed-Loop Control
828(1)
18.3.4 PWM Inverter
829(4)
18.3.5 System Design
833(1)
18.3.6 Simulation Results
833(1)
References
833(2)
Index 835
Dr. Fang Lin Luo, Ph.D., is an Associate Professor with the School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore. He is a fellow of the Cambridge Philosophical Society and a senior member of IEEE. He has published 12 textbooks and 308 technical papers in IEE/IET Proceedings and IEEE Transactions as well as in various international conferences. Dr. Luo is currently the associate editor of IEEE Transactions on Power Electronics and IEEE Transactions on Industrial Electronics. He is also the editor of the international journal Advanced Technology of Electrical Engineering and Energy. His research interests include power electronics and DC and AC motor drives with computerized artificial intelligent (AIC) control and digital signal processing (DSP) as well as AC/DC, DC/DC, and AC/AC converters and DC/AC inverters, renewable energy systems, and electrical vehicles.

Dr. Hong Ye, Ph.D., is a Research Fellow at Nanyang Technological University (NTU), Singapore. She is a member of the IEEE and has coauthored 12 books. Dr. Ye has published more than 80 technical papers in IEEE Transactions, IEE Proceedings, and other international journals, as well as in various international conferences. Her research interests include power electronics and conversion technologies, signal processing, operations research, and structural biology.