Atjaunināt sīkdatņu piekrišanu

E-grāmata: Representation Theory of Finite Monoids

  • Formāts: PDF+DRM
  • Sērija : Universitext
  • Izdošanas datums: 09-Dec-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319439327
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 77,31 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Universitext
  • Izdošanas datums: 09-Dec-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319439327
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the

theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford -Munn-Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.

Preface.- List of Figures.- Introduction.- I. Elements of Monoid Theory.- 1. The Structure Theory of Finite Monoids.- 2. R-trivial Monoids.- 3. Inverse Monoids.- II. Irreducible Representations.- 4. Recollement: The Theory of an Idempotent.- 5. Irreducible Representations.- III. Character Theory.- 6. Grothendieck Ring.- 7. Characters and Class Functions.- IV. The Representation Theory of Inverse Monoids.- 8. Categories and Groupoids.- 9. The Representation Theory of Inverse Monoids.- V. The Rhodes Radical.- 10. Bi-ideals and R. Steinberg"s Theorem.- 11. The Rhodes Radical and Triangularizability.- VI. Applications.- 12. Zeta Functions of Languages and Dynamical Systems.- 13. Transformation Monoids.- 14. Markov Chains.- VII. Advanced Topics.- 15. Self-injective, Frobenius and Symmetric Algebras.- 16. Global Dimension.- 17. Quivers of Monoid Algebras.- 18. Further Developments.- A. Finite Dimensional Algebras.- B. Group Representation Theory.- C. Incidence Algebras and Möbius Invers

ion.- References.- Index of Notation.- Subject Index.

Recenzijas

It can be used as a textbook for advanced or post-graduate courses, but it is also of interest for all readers who enjoy clear algebraic text with numerous results. (Jaak Henno, zbMATH 1428.20003, 2020) This is the first monograph concerned with the representation theory of finite monoids and which takes a modern module theoretic view of the subject. It intends to serve graduate students and researchers in combinatorics, automata theory and probability theory. (K. Auinger, Monatshefte für Mathematik, Vol. 188, 2019) The real strength of the book is that it also addresses and presents many recent applications of representation theory of finite monoids which served as motivation for many activities in the area during the last twenty years. ... this is a well-written and very timely monograph which is suitable for both advanced researchers and graduate studentsfrom a wide range of mathematical areas. (Volodymyr Mazorchuck, Mathematical Reviews, September, 2017)

Preface vii
Introduction xix
Part I Elements of Monoid Theory
1 The Structure Theory of Finite Monoids
3(14)
1.1 Basic notions
3(2)
1.2 Cyclic semigroups
5(2)
1.3 The ideal structure and Green's relations
7(5)
1.4 von Neumann regularity
12(2)
1.5 Exercises
14(3)
2 R-trivial Monoids
17(8)
2.1 Lattices and prime ideals
17(4)
2.2 R-trivial monoids and left regular bands
21(2)
2.3 Exercises
23(2)
3 Inverse Monoids
25(16)
3.1 Definitions, examples, and structure
25(6)
3.2 Conjugacy in the symmetric inverse monoid
31(3)
3.3 Exercises
34(7)
Part II Irreducible Representations
4 Recollement: The Theory of an Idempotent
41(12)
4.1 A miscellany of functors
42(6)
4.2 Idempotents and simple modules
48(3)
4.3 Exercises
51(2)
5 Irreducible Representations
53(42)
5.1 Monoid algebras and representations
53(3)
5.2 Clifford-Munn-Ponizovskii theory
56(4)
5.3 The irreducible representations of the full transformation monoid
60(9)
5.3.1 Construction of the simple modules
61(5)
5.3.2 An approach via polytabloids
66(3)
5.4 Semisimplicity
69(5)
5.5 Monomial representations
74(3)
5.6 Semisimplicity of the algebra of Mn(Fq)
77(11)
5.7 Exercises
88(7)
Part III Character Theory
6 The Grothendieck Ring
95(8)
6.1 The Grothendieck ring
95(3)
6.2 The restriction isomorphism
98(2)
6.3 The triangular Grothendieck ring
100(1)
6.4 The Grothendieck group of projective modules
100(2)
6.5 Exercises
102(1)
7 Characters and Class Functions
103(22)
7.1 Class functions and generalized conjugacy classes
103(3)
7.2 Character theory
106(9)
7.3 The character table of the full transformation monoid
115(1)
7.4 The Burnside-Brauer theorem
116(3)
7.5 The Cartan matrix
119(2)
7.6 Exercises
121(4)
Part IV The Representation Theory of Inverse Monoids
8 Categories and Groupoids
125(12)
8.1 Categories
125(6)
8.2 Groupoids
131(2)
8.3 Exercises
133(4)
9 The Representation Theory of Inverse Monoids
137(18)
9.1 The groupoid of an inverse monoid
137(1)
9.2 The isomorphism of algebras
138(3)
9.3 Decomposing representations of inverse monoids
141(6)
9.4 The character table of the symmetric inverse monoid
147(4)
9.5 Exercises
151(4)
Part V The Rhodes Radical
10 Bi-ideals and R. Steinberg's Theorem
155(8)
10.1 Annihilators of tensor products
155(2)
10.2 Bi-ideals and R. Steinberg's theorem
157(4)
10.3 Exercises
161(2)
11 The Rhodes Radical and Triangularizability
163(14)
11.1 The Rhodes radical and nilpotent bi-ideals
163(4)
11.2 Triangularizable monoids and basic algebras
167(4)
11.3 Exercises
171(6)
Part VI Applications
12 Zeta Functions of Languages and Dynamical Systems
177(14)
12.1 Zeta functions
177(3)
12.2 Rationality of the zeta function of a cyclic regular language
180(3)
12.3 Computing the zeta function
183(4)
12.3.1 Edge shifts
183(2)
12.3.2 The even shift
185(1)
12.3.3 The Ihara zeta function
186(1)
12.4 Exercises
187(4)
13 Transformation Monoids
191(14)
13.1 Transformation monoids
191(1)
13.2 Transformation modules
192(4)
13.3 The Cerny conjecture
196(7)
13.4 Exercises
203(2)
14 Markov Chains
205(24)
14.1 Markov Chains
206(1)
14.2 Random walks
207(1)
14.3 Examples
208(5)
14.3.1 The Tsetlin library
208(2)
14.3.2 The inverse riffle shuffle
210(2)
14.3.3 Ehrenfest urn model
212(1)
14.4 Eigenvalues
213(2)
14.5 Diagonalizability
215(3)
14.6 Examples: revisited
218(4)
14.6.1 The Tsetlin library
218(2)
14.6.2 The inverse riffle shuffle
220(1)
14.6.3 The Ehrenfest urn model
221(1)
14.7 Exercises
222(7)
Part VII Advanced Topics
15 Self-injective, Frobenius, and Symmetric Algebras
229(6)
15.1 Background on self-injective algebras
229(1)
15.2 Regular monoids with self-injective algebras
230(3)
15.3 Exercises
233(2)
16 Global Dimension
235(10)
16.1 Idempotent ideals and homological algebra
235(3)
16.2 Global dimension and homological properties of regular monoids
238(5)
16.3 Exercises
243(2)
17 Quivers of Monoid Algebras
245(18)
17.1 Quivers of algebras
245(2)
17.2 Projective indecomposable modules for R-trivial monoid algebras
247(4)
17.3 The quiver of a left regular band algebra
251(2)
17.4 The quiver of a f-trivial monoid algebra
253(2)
17.5 Sample quiver computations
255(6)
17.5.1 Left regular bands
255(1)
17.5.2 F-trivial monoids
256(5)
17.6 Exercises
261(2)
18 Further Developments
263(6)
18.1 Monoids of Lie type
263(1)
18.2 The representation theory of the full transformation monoid
264(1)
18.3 The representation theory of left regular bands
264(4)
18.4 The Burnside problem for linear monoids
268(1)
Appendix A Finite Dimensional Algebras
269(10)
A.1 Semisimple modules and algebras
269(4)
A.2 Indecomposable modules
273(2)
A.3 Idempotents
275(2)
A.4 Duality and Morita equivalence
277(2)
Appendix B Group Representation Theory
279(12)
B.1 Group algebras
279(1)
B.2 Group character theory
280(3)
B.3 Permutation modules
283(2)
B.4 The representation theory of the symmetric group
285(4)
B.5 Exercises
289(2)
Appendix C Incidence Algebras and Mobius Inversion
291(4)
C.1 The incidence algebra of a poset
291(2)
C.2 Exercises
293(2)
References 295(14)
Index of Notation 309(4)
Subject Index 313
Benjamin Steinberg is a professor at City College of New York and the CUNY graduate center. Steinberg is an algebraist interested in a broad range of areas including semigroups, geometric group theory and representation theory. Other research interests include automata theory, finite state Markov chains and algebras associated to etale groupoids. Steinberg is the co-author of a 2009 Springer publication in the SMM series entitled "The q-theory of Finite Semigroups" and author of the (c) 2012 UTX "Representation Theory of Finite Groups". Ben Steinberg is also an active editorial board member of the Semigroup Forum journal.