Atjaunināt sīkdatņu piekrišanu

Representation Theory: A First Course 2004 ed. [Hardback]

  • Formāts: Hardback, 551 pages, height x width: 235x155 mm, weight: 1010 g, XV, 551 p., 1 Hardback
  • Sērija : Readings in Mathematics 129
  • Izdošanas datums: 22-Oct-1991
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387975276
  • ISBN-13: 9780387975276
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 82,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 97,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 551 pages, height x width: 235x155 mm, weight: 1010 g, XV, 551 p., 1 Hardback
  • Sērija : Readings in Mathematics 129
  • Izdošanas datums: 22-Oct-1991
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 0387975276
  • ISBN-13: 9780387975276
Citas grāmatas par šo tēmu:
The primary goal of these lectures is to introduce a beginner to the finite­ dimensional representations of Lie groups and Lie algebras. Since this goal is shared by quite a few other books, we should explain in this Preface how our approach differs, although the potential reader can probably see this better by a quick browse through the book. Representation theory is simple to define: it is the study of the ways in which a given group may act on vector spaces. It is almost certainly unique, however, among such clearly delineated subjects, in the breadth of its interest to mathematicians. This is not surprising: group actions are ubiquitous in 20th century mathematics, and where the object on which a group acts is not a vector space, we have learned to replace it by one that is {e. g. , a cohomology group, tangent space, etc. }. As a consequence, many mathematicians other than specialists in the field {or even those who think they might want to be} come in contact with the subject in various ways. It is for such people that this text is designed. To put it another way, we intend this as a book for beginners to learn from and not as a reference. This idea essentially determines the choice of material covered here. As simple as is the definition of representation theory given above, it fragments considerably when we try to get more specific.

Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
I: Finite Groups.-
1. Representations of Finite Groups.-
2. Characters.-
3. Examples; Induced Representations; Group Algebras; Real Representations.-
4. Representations of:
$$
{\mathfrak{S}_d}$$
Young Diagrams and Frobeniuss Character Formula.-
5. Representations of
$$
{\mathfrak{A}_d}$$
and
$$
G{L_2}\left( {{\mathbb{F}_q}} \right)$$.-
6. Weyls Construction.-
II: Lie Groups and Lie Algebras.-
7. Lie Groups.-
8. Lie Algebras and Lie
Groups.-
9. Initial Classification of Lie Algebras.-
10. Lie Algebras in
Dimensions One, Two, and Three.-
11. Representations of
$$
\mathfrak{s}{\mathfrak{l}_2}\mathbb{C}$$.-
12. Representations of
$$
\mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$
Part I.-
13. Representations of
$$
\mathfrak{s}{\mathfrak{l}_3}\mathbb{C},$$
Part II: Mainly Lots of Examples.- III: The Classical Lie Algebras and Their
Representations.-
14. The General Set-up: Analyzing the Structure and
Representations of an Arbitrary Semisimple Lie Algebra.-
15.
$$
\mathfrak{s}{\mathfrak{l}_4}\mathbb{C}$$
and
$$
\mathfrak{s}{\mathfrak{l}_n}\mathbb{C}$$.-
16. Symplectic Lie Algebras.-
17.
$$
\mathfrak{s}{\mathfrak{p}_6}\mathbb{C}$$
and
$$
\mathfrak{s}{\mathfrak{p}_2n}\mathbb{C}$$.-
18. Orthogonal Lie Algebras.-
19.
$$
\mathfrak{s}{\mathfrak{o}_6}\mathbb{C},$$$$
\mathfrak{s}{\mathfrak{o}_7}\mathbb{C},$$
and
$$
\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.-
20. Spin Representations of
$$
\mathfrak{s}{\mathfrak{o}_m}\mathbb{C}$$.- IV: Lie Theory.-
21. The
Classification of Complex Simple Lie Algebras.-
22. $$
{g_2}$$and Other Exceptional Lie Algebras.-
23. Complex Lie Groups;
Characters.-
24. Weyl Character Formula.-
25. More Character Formulas.-
26.
Real Lie Algebras and Lie Groups.- Appendices.- A. On Symmetric Functions.-
§A.1: Basic Symmetric Polynomials and Relations among Them.- §A.2: Proofs of
the Determinantal Identities.- §A.3: Other Determinantal Identities.- B. On
Multilinear Algebra.- §B.1: Tensor Products.- §B.2: Exterior and Symmetric
Powers.- §B.3: Duals and Contractions.- C. On Semisimplicity.- §C.1: The
Killing Form and Caftans Criterion.- §C.2: Complete Reducibility and the
Jordan Decomposition.- §C.3: On Derivations.- D. Cartan Subalgebras.- §D.1:
The Existence of Cartan Subalgebras.- §D.2: On the Structure of Semisimple
Lie Algebras.- §D.3: The Conjugacy of Cartan Subalgebras.- §D.4: On the Weyl
Group.- E. Ados and Levis Theorems.- §E.1: Levis Theorem.- §E.2: Ados
Theorem.- F. Invariant Theory for the Classical Groups.- §F.1: The Polynomial
Invariants.- §F.2: Applications to Symplectic and Orthogonal Groups.- §F.3:
Proof of Capellis Identity.- Hints, Answers, and References.- Index of
Symbols.