Atjaunināt sīkdatņu piekrišanu

Research in Computational Molecular Biology: 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings 1st ed. 2017 [Mīkstie vāki]

  • Formāts: Paperback / softback, 406 pages, height x width: 235x155 mm, weight: 6321 g, 104 Illustrations, black and white; XIV, 406 p. 104 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 10229
  • Izdošanas datums: 12-Apr-2017
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319569694
  • ISBN-13: 9783319569697
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 406 pages, height x width: 235x155 mm, weight: 6321 g, 104 Illustrations, black and white; XIV, 406 p. 104 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Computer Science 10229
  • Izdošanas datums: 12-Apr-2017
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319569694
  • ISBN-13: 9783319569697
Citas grāmatas par šo tēmu:
This book constitutes the proceedings of the 21th Annual Conference on Research in Computational Molecular Biology, RECOMB 2017, held in Hong Kong, China, in May 2017.
The 22 regular papers presented in this volume were carefully reviewed and selected from 184 submissions. 16 short abstracts are included in the back matter of the volume. They report on original research in all areas of computational molecular biology and bioinformatics
Boosting alignment accuracy by adaptive local realignment.- A concurrent
subtractive assembly approach for identification of disease associated
sub-meta-genomes.- A flow procedure for the linearization of genome variation
graphs.- Dynamic alignment-free and reference-free read compression.- A fast
approximate algorithm for mapping long reads to large reference databases.-
Determining the consistency of resolved triplets and fan triplets.-
Progressive calibration and averaging for tandem mass spectrometry
statistical confidence estimation: Why settle for a single decoy.- Resolving
multi-copy duplications de novo using polyploid phasing.- A Bayesian active
learning experimental design for inferring signaling networks.- BBK* (Branch
and Bound over K*): A provable and efficient ensemble-based algorithm to
optimize stability and binding affinity over large sequence spaces.-
Super-bubbles, ultra-bubbles and cacti.- EPR-dictionaries: A practical and
fast data structure for constant time searches in unidirectional and
bidirectional FM indices.- A Bayesian framework for estimating cell type
composition from DNA methylation without the need for methylation reference.-
Towards recovering Allele-specific cancer genome graphs.- Using stochastic
approximation techniques to efficiently construct confidence intervals for
heritability.- Improved search of large transcriptomic sequencing databases
using split sequence bloom trees.- All some sequence bloom trees.-
Longitudinal genotype-phenotype association study via temporal structure
auto-learning predictive model.- Improving imputation accuracy by inferring
causal variants in genetic studies.- The copy-number tree mixture
deconvolution problem and applications to multi-sample bulk sequencing tumor
data.- Quantifying the impact of non-coding variants on transcription
factor-DNA binding.- aBayesQR: A Bayesian method for reconstruction of viral
populations characterized by low diversity.- BeWith: A between-within method
for module discovery in cancer using integrated analysis of mutual
exclusivity, co-occurrence and functional interactions.- K-mer Set Memory
(KSM) motif representation enables accurate prediction of the impact of
regulatory variants.- Network-based coverage of mutational profiles reveals
cancer genes.- Ultra-accurate complex disorder prediction: case study of
neurodevelopmental disorders.- Inference of the human polyadenylation Code.-
Folding membrane proteins by deep transfer learning.- A network integration
approach for drug-target interaction prediction and computational drug
repositioning from heterogeneous information.- Epistasis in genomic and
survival data of cancer patients.- Ultra-fast identity by descent detection
in biobank-scale cohorts using positional burrows-wheeler transform.- Joker
de Bruijn: sequence libraries to cover all k-mers using joker characters.-
GATTACA: Lightweight metagenomic binning using kmer counting.- Species tree
estimation using ASTRAL: how many genes are enough.-Reconstructing antibody
repertoires from error-prone immune-sequencing datasets.- NetREX: Network
rewiring using EXpression - Towards context specific regulatory networks.- E
pluribus unum: United States of single cells.- ROSE: a deep learning based
framework for predicting ribosome stalling.