Atjaunināt sīkdatņu piekrišanu

E-grāmata: Residual Life Prediction and Optimal Maintenance Decision for a Piece of Equipment

  • Formāts: EPUB+DRM
  • Izdošanas datums: 30-Jul-2021
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811622670
  • Formāts - EPUB+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 30-Jul-2021
  • Izdevniecība: Springer Verlag, Singapore
  • Valoda: eng
  • ISBN-13: 9789811622670

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book addresses remaining life prediction and predictive maintenance of equipment. It systematically summarizes the key research findings made by the author and his team and focuses on how to create equipment performance degradation and residual life prediction models based on the performance monitoring data produced by currently used and historical equipment. Some of the theoretical results covered here have been used to make remaining life predictions and maintenance-related decisions for aerospace products such as gyros and platforms. Given its scope, the book offers a valuable reference guide for those pursuing theoretical or applied research in the areas of fault diagnosis and fault-tolerant control, remaining life prediction, and maintenance decision-making.

Introduction.- Degradation modelling and remaining useful life estimation based on a nonlinear diffusion process.- Degradation modelling and remaining useful life estimation based on a Wiener process with change points.- Residual life prediction based on an inverse-Gaussian process.- Degradation modelling and remaining useful life prediction with support vector machines.- Degradation modelling and remaining useful life estimation based on a relative vector machine fuzzy model.- Performance degradation modelling and reliability prediction based on evidential reasoning approach.- Residual life prediction based on a weight selected particle filter.- Optimal inspection policy based on predicted life information for a deteriorating equipment.- Cooperative predictive maintenance of repairable systems with dependent failure modes and resource constraint.
Changhua Hu is a Cheung Kong professor at Hi-Tech Institute of Xian, Shaanxi, China. He was a visiting scholar at University of Duisburg (September 2008December 2008). His current research has been supported by the National Science Foundation of China. He has published two books and over 100 articles. His research interests include fault diagnosis and prognosis, life prediction, and fault-tolerant control.

Hongdong Fan received his B.Eng. degree in mechanical and electrical engineering, M.Sc., and Ph.D. degrees in control engineering all from Xian Institute of Hi-Tech, Xian, China, in 2003, 2006, and 2012, respectively. He is currently a lecturer of Xian Institute of Hi-Tech. His current research interest is in the area of reliability analysis, fault prognosis, and predictive maintenance.







Zhaoqiang Wang received the M.S. and Ph.D. degrees from High-Tech Institute of Xi'an, Xian, Shaanxi, China, in 2011 and 2015, respectively. He iscurrently an assistant professor with the High-Tech Institute of Xi'an, Xian, Shaanxi, China. He has published one book and over 20 articles in several journals, including the IEEE/ASME Transactions on Mechatronics, IEEE Transactions on Reliability, Mechanical Systems & Signal Processing, Reliability Engineering & System Safety, etc. He is also an active reviewer for a number of high-quality international journals. His research interests include machine learning, prognostics and health management, reliability modeling, maintenance scheduling, and inventory controlling.