Atjaunināt sīkdatņu piekrišanu

Reverse Engineering of Deceptions on Machine- and Human-Centric Attacks [Mīkstie vāki]

  • Formāts: Paperback / softback, 112 pages, height x width: 234x156 mm, weight: 170 g
  • Sērija : Foundations and Trends® in Privacy and Security
  • Izdošanas datums: 26-Mar-2024
  • Izdevniecība: now publishers Inc
  • ISBN-10: 1638283400
  • ISBN-13: 9781638283409
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 92,43 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 112 pages, height x width: 234x156 mm, weight: 170 g
  • Sērija : Foundations and Trends® in Privacy and Security
  • Izdošanas datums: 26-Mar-2024
  • Izdevniecība: now publishers Inc
  • ISBN-10: 1638283400
  • ISBN-13: 9781638283409
Citas grāmatas par šo tēmu:
This monograph presents a comprehensive exploration of Reverse Engineering of Deceptions (RED) in the field of adversarial machine learning. It delves into the intricacies of machine and human-centric attacks, providing a holistic understanding of how adversarial strategies can be reverse-engineered to safeguard AI systems.

For machine-centric attacks, reverse engineering methods for pixel-level perturbations are covered, as well as adversarial saliency maps and victim model information in adversarial examples. In the realm of human-centric attacks, the focus shifts to generative model information inference and manipulation localization from generated images.

In this work, a forward-looking perspective on the challenges and opportunities associated with RED are presented. In addition, foundational and practical insights in the realms of AI security and trustworthy computer vision are provided.
1. Introduction
2. Reverse Engineering of Adversarial Examples
3. Model Parsing via Adversarial Examples
4. Reverse Engineering of Generated Images
5. Manipulation Localization of Generated Images
6. Conclusion and Discussion
References