Atjaunināt sīkdatņu piekrišanu

E-grāmata: Revolutions of Geometry

(College of DuPage)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 154,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Guides readers through the development of geometry and basic proof writing using a historical approach to the topic In an effort to fully appreciate the logic and structure of geometric proofs, Revolutions of Geometry places proofs into the context of geometry's history, helping readers to understand that proof writing is crucial to the job of a mathematician. Written for students and educators of mathematics alike, the book guides readers through the rich history and influential works, from ancient times to the present, behind the development of geometry. As a result, readers are successfully equipped with the necessary logic to develop a full understanding of geometric theorems.

Following a presentation of the geometry of ancient Egypt, Babylon, and China, the author addresses mathematical philosophy and logic within the context of works by Thales, Plato, and Aristotle. Next, the mathematics of the classical Greeks is discussed, incorporating the teachings of Pythagoras and his followers along with an overview of lower-level geometry using Euclid's Elements. Subsequent chapters explore the work of Archimedes, Viete's revolutionary contributions to algebra, Descartes' merging of algebra and geometry to solve the Pappus problem, and Desargues' development of projective geometry. The author also supplies an excursion into non-Euclidean geometry, including the three hypotheses of Saccheri and Lambert and the near simultaneous discoveries of Lobachevski and Bolyai. Finally, modern geometry is addressed within the study of manifolds and elliptic geometry inspired by Riemann's work, Poncelet's return to projective geometry, and Klein's use of group theory to characterize different geometries.

The book promotes the belief that in order to learn how to write proofs, one needs to read finished proofs, studying both their logic and grammar. Each chapter features a concise introduction to the presented topic, and chapter sections conclude with exercises that are designed to reinforce the material and provide readers with ample practice in writing proofs. In addition, the overall presentation of topics in the book is in chronological order, helping readers appreciate the relevance of geometry within the historical development of mathematics.

Well organized and clearly written, Revolutions of Geometry is a valuable book for courses on modern geometry and the history of mathematics at the upper-undergraduate level. It is also a valuable reference for educators in the field of mathematics.

Recenzijas

"An excellent supplemental resource or main textbook for an overview of mathematics course for upper-level undergraduate and graduate students." (Choice, October 2010).

Preface xi
Acknowledgments xiii
PART I FOUNDATIONS
The First Geometers
3(24)
Egypt
6(7)
Babylon
13(7)
China
20(7)
Thales
27(26)
The Axiomatic System
29(6)
Deductive Logic
35(8)
Proof Writing
43(10)
Plato and Aristotle
53(34)
Form
56(6)
Categorical Propositions
62(10)
Categorical Syllogisms
72(5)
Figures
77(10)
PART II THE GOLDEN AGE
Pythagoras
87(36)
Number Theory
91(7)
The Pythagorean Theorem
98(4)
Archytas
102(8)
The Golden Ratio
110(13)
Euclid
123(50)
The Elements
124(6)
Constructions
130(8)
Triangles
138(9)
Parallel Lines
147(12)
Circles
159(8)
The Pythagorean Theorem Revisited
167(6)
Archimedes
173(54)
The Archimedean Library
174(8)
The Method of Exhaustion
182(11)
The Method
193(11)
Preliminaries to the Proof
204(10)
The Volume of a Sphere
214(13)
PART III ENLIGHTENMENT
Francols Viete
227(40)
The Analytic Art
229(7)
Three Problems
236(10)
Conic Sections
246(11)
The Analytic Art in Two Variables
257(10)
Rene Descartes
267(26)
Compasses
269(5)
Method
274(5)
Analytic Geometry
279(14)
Gerard Desargues
293(30)
Projections
294(4)
Points at Infinity
298(8)
Theorems of Desargues and Menelaus
306(6)
Involutions
312(11)
PART IV A STRANGE NEW WORLD
Glovannl Saccherl
323(30)
The Question of Parallels
324(6)
The Three Hypotheses
330(7)
Conclusions for Two Hypotheses
337(3)
Properties of Parallel Lines
340(9)
Parallelism Redefined
349(4)
Johann Lambert
353(40)
The Three Hypotheses Revisited
355(5)
Polygons
360(13)
Omega Triangles
373(10)
Pure Reason
383(10)
Nicolal Lobachevski and Janos Bolyal
393(50)
Parallel Fundamentals
397(7)
Horocycles
404(10)
The Surface of a Sphere
414(10)
Horospheres
424(7)
Evaluating the Pi Function
431(12)
PART V NEW DIRECTIONS
Bernhard Riemann
443(40)
Metric Spaces
445(12)
Topological Spaces
457(7)
Stereographic Projection
464(7)
Consistency of Non-Euclidean Geometry
471(12)
Jean-Victor Poncelet
483(36)
The Projective Plane
486(6)
Duality
492(9)
Perspectivity
501(6)
Homogeneous Coordinates
507(12)
Felix Klein
519(46)
Group Theory
520(9)
Transformation Groups
529(6)
The Principal Group
535(8)
Isometries of the Plane
543(10)
Consistency of Euclidean Geometry
553(12)
References 565(8)
Index 573
Michael O'Leary, PhD, is Professor of Mathematics at the College of DuPage. He received his PhD in mathematics from the University of California, Irvine in 1994.