Atjaunināt sīkdatņu piekrišanu

E-grāmata: RFID Protocol Design, Optimization, and Security for the Internet of Things

(North Carolina State University, Department of Computer Science, USA), (The Hong Kong Polytechnic University, Department of Computing, Hong Kong, China-), , (Michigan State University, Department of Computer Science and Engineering, USA)
  • Formāts: PDF+DRM
  • Sērija : Control, Robotics and Sensors
  • Izdošanas datums: 17-Nov-2017
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781785613333
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 219,15 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Control, Robotics and Sensors
  • Izdošanas datums: 17-Nov-2017
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781785613333
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. The tags contain electronically stored information. RFIDs have been widely used in countless applications such as object tracking, 3D positioning, indoor localization, supply chain management, automotive, inventory control, anti-theft, anti-counterfeit, and access control. The Internet of Things (IoT) promises a huge growth in RFID technology and usage.



This book covers the topic of RFID protocol design, optimization, and security. RFID systems allow for a much easier and error free inventory management and tracking, but the probabilistic nature of RFID protocols makes the design and optimization complex and challenging. Most existing commercial RFID systems are not well designed. In this book, the authors aim to demystify complicated RFID protocols and explain in depth the principles, techniques, and practices in designing and optimizing them.
List of figures
xiii
List of tables
xviii
Authors' biographies xix
1 RFID identification---design and optimization
1(36)
1.1 Introduction
1(6)
1.1.1 Background and problem statement
1(1)
1.1.2 Summary and limitations of prior art
2(2)
1.1.3 System model
4(1)
1.1.4 Proposed approach
4(3)
1.2 Related work
7(1)
1.2.1 Nondeterministic identification protocols
7(1)
1.2.2 Deterministic identification protocols
7(1)
1.2.3 Hybrid identification protocols
8(1)
1.3 Optimal tree hopping
8(8)
1.3.1 Average number of queries
8(4)
1.3.2 Calculating optimal hopping level
12(3)
1.3.3 Maximum number of queries
15(1)
1.4 Minimizing identification time
16(4)
1.5 Discussion
20(5)
1.5.1 Virtual conversion of population distributions
20(3)
1.5.2 Reliable tag identification
23(1)
1.5.3 Continuous scanning
24(1)
1.5.4 Multiple readers
25(1)
1.6 Performance comparison
25(10)
1.6.1 Reader side comparison
25(5)
1.6.2 Tag side comparison
30(5)
1.7 Conclusion
35(2)
2 RFID identification---fairness
37(24)
2.1 Introduction
37(4)
2.1.1 Motivation and problem statement
37(1)
2.1.2 Limitations of prior art
38(1)
2.1.3 Proposed approach
39(1)
2.1.4 Key novelty and contributions
40(1)
2.2 Related work
41(1)
2.2.1 Deterministic identification protocols
41(1)
2.2.2 Nondeterministic identification protocols
42(1)
2.2.3 Hybrid identification protocols
42(1)
2.3 Optimal frame size
42(11)
2.3.1 Jain's fairness index
43(1)
2.3.2 Total identification time
44(1)
2.3.3 Expected values of slots
44(2)
2.3.4 Expected number of Aloha frames
46(1)
2.3.5 Calculating optimal frame size
47(5)
2.3.6 Large frame size implementation
52(1)
2.4 Experimental results
53(7)
2.4.1 Evaluation of FRIP
54(3)
2.4.2 Comparison with existing protocols
57(3)
2.5 Conclusion
60(1)
3 RFID estimation---design and optimization
61(32)
3.1 Introduction
61(2)
3.1.1 Motivation and problem statement
61(1)
3.1.2 Proposed approach
62(1)
3.1.3 Advantages of ART over prior art
62(1)
3.2 Related work
63(1)
3.3 ART---scheme overview
64(2)
3.3.1 Communication protocol overview
64(1)
3.3.2 Estimation scheme overview
64(1)
3.3.3 Formal development: overview and assumptions
65(1)
3.4 ART---estimation algorithm
66(7)
3.5 ART---parameter tuning
73(10)
3.5.1 Persistence probability p
74(3)
3.5.2 Number of rounds n
77(1)
3.5.3 Optimal frame size ∫
78(1)
3.5.4 Obtaining population upper bound tm
79(4)
3.6 ART---practical considerations
83(2)
3.6.1 Unbounded tag population size
83(2)
3.6.2 ART with multiple readers
85(1)
3.7 ART---analysis
85(3)
3.7.1 Independence of estimation time from tag population size
85(2)
3.7.2 Computational complexity
87(1)
3.7.3 Analytical comparison of estimators
87(1)
3.8 Performance evaluation
88(4)
3.8.1 Estimation time
89(2)
3.8.2 Actual reliability
91(1)
3.9 Conclusion
92(1)
4 RFID estimation---impact of blocker tags
93(30)
4.1 Introduction
93(5)
4.1.1 Background and motivation
93(1)
4.1.2 Problem statement
94(1)
4.1.3 Limitations of prior art
94(2)
4.1.4 Proposed approach
96(1)
4.1.5 Challenges and proposed solutions
96(1)
4.1.6 Novelty and advantage over prior art
97(1)
4.2 REB protocol
98(7)
4.2.1 System model
98(1)
4.2.2 Protocol description
98(2)
4.2.3 Functional estimator
100(1)
4.2.4 Variance of estimator
101(2)
4.2.5 Refined estimation with k frames
103(2)
4.3 Parameter optimization
105(8)
4.3.1 Minimizing time cost
105(2)
4.3.2 Minimizing energy cost
107(4)
4.3.3 Trade-off between time cost and energy cost
111(1)
4.3.4 Dynamic parameter optimization
112(1)
4.3.5 Avoiding premature termination
112(1)
4.4 Performance evaluation
113(6)
4.4.1 Verifying the convergence of ∫ and p
113(1)
4.4.2 Evaluating the actual reliability
113(2)
4.4.3 Evaluating the time efficiency
115(2)
4.4.4 Evaluating the energy efficiency
117(2)
4.4.5 Performance with constraints on time/energy cost
119(1)
4.5 Related work
119(2)
4.6 Conclusion
121(2)
5 RFID detection---missing tags
123(32)
5.1 Introduction
123(4)
5.1.1 Background and motivation
123(1)
5.1.2 Summary and limitations of prior art
123(1)
5.1.3 Problem statement and proposed approach
124(2)
5.1.4 Technical challenges and solutions
126(1)
5.1.5 Key novelty and advantages over prior art
127(1)
5.2 Related work
127(2)
5.2.1 Probabilistic protocols
128(1)
5.2.2 Deterministic protocols
128(1)
5.3 System model
129(1)
5.3.1 Architecture
129(1)
5.3.2 C1G2 compliance
129(1)
5.3.3 Communication channel
130(1)
5.3.4 Formal development assumption
130(1)
5.4 Protocol for detection: RUND
130(2)
5.5 Parameter optimization: RUND
132(10)
5.5.1 Estimating number of unexpected tags
133(1)
5.5.2 False-positive probability
134(2)
5.5.3 Achieving required reliability
136(1)
5.5.4 Minimizing execution time
137(1)
5.5.5 Handling large frame sizes
137(2)
5.5.6 Expected detection time
139(2)
5.5.7 Estimating number of missing tags
141(1)
5.6 Protocol for identification: RUN1
142(1)
5.7 Parameter optimization: RUN1
143(3)
5.7.1 Identifying all missing tags
143(2)
5.7.2 Minimizing the execution time
145(1)
5.8 Performance evaluation
146(7)
5.8.1 Impact of number of missing tags on RUND
147(1)
5.8.2 Impact of number of unexpected tags on RUND
148(1)
5.8.3 Impact of number of missing tags on RUN1
149(1)
5.8.4 Impact of number of unexpected tags on RUN1
149(1)
5.8.5 Impact of deviation from threshold
150(1)
5.8.6 Estimation accuracy
151(1)
5.8.7 Comparison with tag ID collection protocol
152(1)
5.9 Conclusions
153(2)
6 RFID detection---unknown tags
155(20)
6.1 Introduction
155(2)
6.1.1 Background
155(1)
6.1.2 Motivation and problem statement
155(1)
6.1.3 Existing work and limitations
156(1)
6.1.4 Main contributions
156(1)
6.2 Related work
157(2)
6.3 Preliminary
159(2)
6.3.1 System model and assumption
159(1)
6.3.2 Energy consumption model
159(1)
6.3.3 Performance metrics
160(1)
6.4 A sampling bloom filter-based unknown tag detection protocol
161(8)
6.4.1 Overview of the sampling bloom filter
161(1)
6.4.2 Protocol design of SBF-UDP
162(1)
6.4.3 Investigating the detection accuracy
163(1)
6.4.4 Analyzing the performance of SBF-UDP
163(6)
6.5 Performance evaluation
169(4)
6.5.1 Demonstrating the advantages of sampling bloom filter
169(1)
6.5.2 Comparing with the prior related protocols
169(2)
6.5.3 The actual detection reliability
171(1)
6.5.4 The impact of channel error
171(2)
6.6 Conclusion
173(2)
7 RFID queries---single category
175(20)
7.1 Introduction
175(3)
7.1.1 Background and motivation
175(1)
7.1.2 Problem statement
176(1)
7.1.3 Limitations of prior art
176(1)
7.1.4 Proposed approach
176(1)
7.1.5 Technical challenges and proposed solutions
177(1)
7.1.6 Advantages over prior art
178(1)
7.2 Related work
178(1)
7.3 System model
179(2)
7.3.1 Architecture
179(1)
7.3.2 C1G2 compliance
180(1)
7.3.3 Communication channel
180(1)
7.3.4 Independence assumption
180(1)
7.4 RFID tag search protocol
181(4)
7.4.1 Protocol description
181(1)
7.4.2 Estimating number of tags in set C
181(4)
7.5 Parameter optimization
185(5)
7.5.1 False positive probability
185(1)
7.5.2 Confidence condition
186(1)
7.5.3 Duration condition
187(3)
7.5.4 Handling large frame sizes
190(1)
7.6 Performance evaluation
190(4)
7.6.1 Accuracy
191(2)
7.6.2 Execution time
193(1)
7.7 Conclusion
194(1)
8 RFID queries---multiple category
195(20)
8.1 Introduction
195(4)
8.1.1 Background and problem statement
195(1)
8.1.2 Limitations of prior art
196(1)
8.1.3 Proposed approach
196(2)
8.1.4 Technical challenges and solutions
198(1)
8.1.5 Novelty and advantage over prior art
198(1)
8.2 The basic protocol: TKQ
199(4)
8.3 The supplementary protocol: SPH
203(5)
8.3.1 Motivation and challenge
203(1)
8.3.2 Case study
204(1)
8.3.3 Detailed design of SPH
205(1)
8.3.4 Parameter optimization
206(2)
8.3.5 Discussion on some practical issues
208(1)
8.4 Related work
208(1)
8.5 Performance evaluation
209(4)
8.5.1 Time efficiency
210(2)
8.5.2 Reliability
212(1)
8.5.3 Time efficiency vs. accuracy
213(1)
8.6 Conclusion
213(2)
9 RFID privacy and authentication protocols
215(20)
9.1 Introduction
215(2)
9.2 Premier RFID authentication and privacy protocols
217(2)
9.2.1 Tag "killing" protocols
217(1)
9.2.2 Cryptography protocols
218(1)
9.3 RFID privacy devices
219(2)
9.3.1 Faraday's cage
219(1)
9.3.2 Active jamming device
219(1)
9.3.3 Blocker tag
220(1)
9.4 RFID protocols based on hash functions
221(7)
9.4.1 Hash lock: the original hash function-based approach
222(1)
9.4.2 Tree-based approaches
223(2)
9.4.3 HashTree: a dynamic key-updating approach
225(3)
9.5 Other RFID authentication and privacy protocols
228(5)
9.5.1 Minimalist cryptography
228(1)
9.5.2 RFIDGuard: an authentication and privacy protocol designed for passive RFID tags
229(4)
9.6 Conclusion
233(2)
References 235(10)
Index 245
Alex X. Liu is a Professor of Michigan State University, Department of Computer Science and Engineering, East Lansing, Michigan, USA.



Muhammad Shahzad is an Assistant Professor of North Carolina State University, Department of Computer Science, Raleigh, North Carolina, USA.



Xiulong Liu is a Postdoctoral Fellow at The Hong Kong Polytechnic University, Department of Computing, Hong Kong, China.



Keqiu Li is a Professor and the Dean of the School of Computer Software at Tianjin University, Tianjin, China.