Atjaunināt sīkdatņu piekrišanu

E-grāmata: RFID Technologies for Internet of Things

  • Formāts: PDF+DRM
  • Sērija : Wireless Networks
  • Izdošanas datums: 02-Nov-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319473550
  • Formāts - PDF+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Wireless Networks
  • Izdošanas datums: 02-Nov-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319473550

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book introduces applications of RFID on the Internet of things, under the emerging technologies for tag search, anonymous RFID authentication, and identification of networked tags. A new technique called filtering vector (a compact data structure that encodes tag IDs) is proposed to enable tag filtration, meeting the stringent delay requirements for real-world applications. Based on filtering vectors, a novel iterative tag search protocol is designed, which progressively improves the accuracy of search result and reduces the time of each iteration by using the information learned from the previous iterations. Moreover, the protocol is extended to work under noisy channel.  The authors also make a fundamental shift from the traditional design paradigm for anonymous RFID authentication by following an asymmetry design principle that pushes most complexity to the readers while leaving the tags as simple as possible. A novel technique is developed to dynamically generate random

tokens on demand for authentication. The token-based authentication protocol only requires O(1) communication overhead and online computation overhead per authentication for both readers and tags.  Finally, the authors investigate the problem of networked-tag identification. The traditional contention-based protocol design will incur too much energy overhead in multihop tag systems, and a reader-coordinated design that significantly serializes tag transmissions performs much better. In addition, a solution based on serial numbers is proposed to achieve load balancing, thereby reducing the worst-case energy cost among the tags.  Designed for researchers and professionals, this SpringerBrief will interest individuals who work in efficiency, security, and privacy. Advanced-level students focused on network design will also benefit from the content.

Introduction.- Efficient Tag Search in Large RFID Systems.- Lightweight Anonymous RFID Authentication.- Identifying State-Free Networked Tags.
1 Introduction
1(8)
1.1 Internet of Things
1(1)
1.2 RFID Technologies
1(1)
1.3 Tag Search Problem
2(1)
1.4 Anonymous RFID Authentication
3(1)
1.5 Identification of Networked Tags
4(1)
1.6 Outline of the Book
5(4)
References
5(4)
2 Efficient Tag Search in Large RFID Systems
9(30)
2.1 System Model and Problem Statement
9(2)
2.1.1 System Model
9(1)
2.1.2 Time Slots
10(1)
2.1.3 Problem Statement
10(1)
2.2 Related Work
11(3)
2.2.1 Tag Identification
11(2)
2.2.2 Polling Protocol
13(1)
2.2.3 CATS Protocol
13(1)
2.3 A Fast Tag Search Protocol Based on Filtering Vectors
14(11)
2.3.1 Motivation
14(1)
2.3.2 Bloom Filter
15(1)
2.3.3 Filtering Vectors
15(2)
2.3.4 Iterative Use of Filtering Vectors
17(1)
2.3.5 Generalized Approach
18(1)
2.3.6 Values of mi
19(3)
2.3.7 Iterative Tag Search Protocol
22(1)
2.3.8 Cardinality Estimation
23(1)
2.3.9 Additional Filtering Vectors
24(1)
2.3.10 Hardware Requirement
24(1)
2.4 ITSP over Noisy Channel
25(4)
2.4.1 ITSP with Noise on Forward Link
25(1)
2.4.2 ITSP with Noise on Reverse Link
26(3)
2.5 Performance Evaluation
29(8)
2.5.1 Performance Metric
29(1)
2.5.2 Performance Comparison
29(2)
2.5.3 False-Positive Ratio
31(1)
2.5.4 Performance Evaluation Under Channel Error
32(5)
2.6 Summary
37(2)
References
37(2)
3 Lightweight Anonymous RFID Authentication
39(28)
3.1 System Model and Security Model
39(3)
3.1.1 System Model
39(1)
3.1.2 Security Model
40(2)
3.2 Related Work
42(1)
3.2.1 Non-tree-Based Protocols
42(1)
3.2.2 Tree-Based Protocols
43(1)
3.3 A Strawman Solution
43(2)
3.3.1 Motivation
43(1)
3.3.2 A Strawman Solution
44(1)
3.4 Dynamic Token-Based Authentication Protocol
45(8)
3.4.1 Motivation
45(1)
3.4.2 Overview
46(1)
3.4.3 Initialization Phase
46(1)
3.4.4 Authentication Phase
47(1)
3.4.5 Updating Phase
47(2)
3.4.6 Randomness Analysis
49(3)
3.4.7 Discussion
52(1)
3.4.8 Potential Problems of TAP
53(1)
3.5 Enhanced Dynamic Token-Based Authentication Protocol
53(6)
3.5.1 Resistance Against Desynchronization and Replay Attacks
53(2)
3.5.2 Resolving Hash Collisions
55(3)
3.5.3 Discussion
58(1)
3.6 Security Analysis
59(1)
3.7 Numerical Results
60(4)
3.7.1 Effectiveness of Multi-Hash Scheme
60(1)
3.7.2 Token-Level Randomness
61(1)
3.7.3 Bit-Level Randomness
61(3)
3.8 Summary
64(3)
References
64(3)
4 Identifying State-Free Networked Tags
67
4.1 System Model and Problem Statement
67(3)
4.1.1 Networked Tag System
67(1)
4.1.2 Problem Statement
68(1)
4.1.3 State-Free Networked Tags
68(1)
4.1.4 System Model
69(1)
4.2 Related Work
70(1)
4.3 Contention-Based ID Collection Protocol for Networked Tag Systems
71(4)
4.3.1 Motivation
71(1)
4.3.2 Request Broadcast Protocol
72(2)
4.3.3 ID Collection Protocol
74(1)
4.4 Serialized ID Collection Protocol
75(10)
4.4.1 Motivation
75(1)
4.4.2 Overview
75(1)
4.4.3 Biased Energy Consumption
76(1)
4.4.4 Serial Numbers
77(1)
4.4.5 Parent Selection
78(1)
4.4.6 Serialization at Tier Two
79(1)
4.4.7 Recursive Serialization
80(2)
4.4.8 Frame Size
82(1)
4.4.9 Load Factor Per Tag
83(2)
4.5 Improving Time Efficiency of SICP
85(4)
4.5.1 Request Aggregation
85(1)
4.5.2 ID-Transmission Pipelining
86(3)
4.6 Evaluation
89(4)
4.6.1 Simulation Setup
89(1)
4.6.2 Children Degree and Load Factor
90(1)
4.6.3 Performance Comparison
91(1)
4.6.4 Performance Tradeoff for SICP and p-SICP
92(1)
4.6.5 Time-Efficiency Comparison of SCIP and p-SICP
93(1)
4.7 Summary
93
References
95