Atjaunināt sīkdatņu piekrišanu

E-grāmata: RFID and Wireless Sensors Using Ultra-Wideband Technology

(Associate Professor at Universitat Rovira i Virgili, Tarragona, Spain), (Lecturer and Professor at Universitat Rovira i Virgili, Tarragona, Spain), (Research Fellow at Grenoble-INP, France.), (Ramon Villarino is Associate Professor Uni)
  • Formāts: PDF+DRM
  • Izdošanas datums: 09-May-2016
  • Izdevniecība: ISTE Press Ltd - Elsevier Inc
  • Valoda: eng
  • ISBN-13: 9780081011898
  • Formāts - PDF+DRM
  • Cena: 103,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 09-May-2016
  • Izdevniecība: ISTE Press Ltd - Elsevier Inc
  • Valoda: eng
  • ISBN-13: 9780081011898

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

RFID, Wireless Sensors Using Ultra-Wideband Technology explores how RFID-based technologies are becoming the first choice to realize the last (wireless) link in the chain between each element and the Internet due to their low cost and simplicity. Each day more and more elements are being connected to the Internet of Things. In this book, ultra-wideband radio technology (in time domain) is exploited to realize this wireless link.Chipless, semi-passive and active RFID systems and wireless sensors and prototypes are proposed in terms of reader (setup and signal processing techniques) and tags (design, integration of sensors and performance). The authors include comprehensive theories, proposals of advanced techniques and their implementation to help you develop time-domain ultra-wideband radio technology for a variety of applications. This book is suitable for post-doctoral candidates, experienced researchers, and engineers developing RFID, tag antenna designs, chipless RFID, and sensor integration.Includes comprehensive theories, advanced techniques, and guidelines for their implementation to help you develop time-domain ultra-wideband radio technology for a variety of applicationsDiscusses ultra-wideband (UWB) technology in time-domain, used to develop RFID systems and wireless sensorsExplores the development of hipless, semi-passive, and active identification platforms in terms of low-cost readers and tagsIntegrates wireless sensors in the proposed chipless and semi-passive platforms

Papildus informācija

This practical guide teaches how to develop low-cost readers and tags with RFID systems and wireless sensors from ultra-wideband technology.
Preface ix
Acknowledgements xi
Chapter 1 Introduction to RFID and Chipless RFID
1(18)
1.1 RFID: state of the art
2(8)
1.1.1 Introduction to RFID
2(3)
1.1.2 Chipless RFID
5(5)
1.2 Extending RFID capabilities: from ID to sensing
10(4)
1.2.1 Existing technologies for WSNs
12(1)
1.2.2 RFID-enabled wireless sensors
13(1)
1.3 Ultra-wideband technology for RFID applications
14(4)
1.3.1 Introduction to ultra-wideband technology
14(2)
1.3.2 UWB-based RFID
16(2)
1.4 Organization of this book
18(1)
Chapter 2 Chipless Time-coded UWB RFID: Reader, Signal Processing and Tag Design
19(56)
2.1 Introduction
19(1)
2.2 Theory
20(7)
2.3 Reader design
27(5)
2.3.1 Frequency-step approach
27(1)
2.3.2 Impulse-based approach
28(3)
2.3.3 Comparison and conclusions
31(1)
2.4 Signal processing techniques
32(7)
2.4.1 Time-windowing and background subtraction
33(1)
2.4.2 Continuous wavelet transform
34(5)
2.5 Design of chipless time-coded UWB RFID tags
39(13)
2.5.1 Design of UWB antennas
39(5)
2.5.2 Integrating delay lines with UWB antennas
44(5)
2.5.3 Circularly polarized UWB RFID tags
49(3)
2.6 Characterization of chipless time-coded UWB RFID tags
52(21)
2.6.1 Time-domain response: distance and resolution
53(5)
2.6.2 Angular behavior
58(1)
2.6.3 Influence of materials
59(8)
2.6.4 Polarization
67(1)
2.6.5 Flexible substrates: bending
68(5)
2.7 Conclusions
73(2)
Chapter 3 Wireless Sensors Using Chipless Time-coded UWB RFID
75(48)
3.1 Introduction
75(1)
3.2 Amplitude-based chipless time-coded sensors
76(29)
3.2.1 Principle of operation
76(3)
3.2.2 Temperature sensor based on chipless time-coded UWB tags
79(10)
3.2.3 Temperature threshold detectors based on chipless time-coded UWB tags
89(10)
3.2.4 Self-calibration and reliability
99(6)
3.3 Delay-based time-coded chipless sensors
105(17)
3.3.1 Principle of operation
106(3)
3.3.2 Permittivity sensor based on chipless time-coded UWB tags
109(13)
3.4 Conclusions
122(1)
Chapter 4 Semi-passive Time-coded UWB RFID: Analog and Digital Approaches
123(40)
4.1 Introduction
123(2)
4.2 Wake-up system
125(7)
4.2.1 Overview
125(1)
4.2.2 Schottky diode-based detector
126(4)
4.2.3 Reader: modulation schemes
130(1)
4.2.4 Interferences and coexistence with other systems
131(1)
4.3 Microcontroller-based semi-passive UWB RFID system
132(17)
4.3.1 Introduction
132(2)
4.3.2 Microcontroller: tag core logic
134(2)
4.3.3 UWB backscatterer design and evaluation
136(4)
4.3.4 Differential coding and detection techniques
140(2)
4.3.5 Communication protocol
142(1)
4.3.6 System scalability, applications and sensor integration
143(2)
4.3.7 Results
145(4)
4.4 Analog semi-passive UWB RFID system
149(11)
4.4.1 Introduction
149(2)
4.4.2 Switch-based UWB backscatterer
151(4)
4.4.3 PIN diode-based UWB backscatterer
155(2)
4.4.4 Detector circuit design
157(3)
4.5 Discussion, comparison between systems and conclusions
160(3)
Chapter 5 Wireless Sensors Using Semi-passive UWB RFID
163(34)
5.1 Introduction
163(1)
5.2 Solar-powered temperature sensor based on analog semi-passive UWB RFID
164(12)
5.2.1 Introduction
164(1)
5.2.2 Sensor design and calibration
165(2)
5.2.3 Solar-cell integration: power requirements
167(3)
5.2.4 Results and error study
170(6)
5.3 Nitrogen dioxide gas sensor based on analog semi-passive UWB RFID
176(10)
5.3.1 Introduction
176(1)
5.3.2 CNT-based nitrogen dioxide sensor
177(4)
5.3.3 Wireless sensor design and calibration
181(1)
5.3.4 Results
182(4)
5.4 Sensor integration in microcontroller-based semi-passive UWB RFID
186(6)
5.4.1 Multi-sensor tag
187(2)
5.4.2 Nitrogen dioxide gas sensor
189(3)
5.5 Comparison between chipless and semi-passive approaches: conclusions
192(5)
Chapter 6 Active Time-coded UWB RFID
197(24)
6.1 Introduction
197(1)
6.2 Active UWB RFID system based on cross-polarization amplifier
198(14)
6.2.1 Introduction
198(1)
6.2.2 Cross-polarization amplifier design
199(5)
6.2.3 UWB and UHF link budget
204(4)
6.2.4 Results
208(4)
6.3 Active UWB RFID system based on reflection amplifier
212(6)
6.3.1 Introduction
212(2)
6.3.2 Reflection amplifier design
214(1)
6.3.3 UWB link budget
215(1)
6.3.4 Results
216(2)
6.4 Discussion and comparison between systems
218(3)
Chapter 7 Indoor Localization with Smart Floor Based on Time-coded UWB RFID and Ground Penetrating Radar
221(12)
7.1 Introduction
221(1)
7.2 Smart floor design alternatives
222(2)
7.3 Results
224(7)
7.3.1 Smart floor based on passive reflectors
224(4)
7.3.2 Smart floor based on chipless time-coded UWB RFID tags
228(2)
7.3.3 Smart floor based on semi-passive time-coded UWB RFID tags
230(1)
7.4 Conclusions
231(2)
Bibliography 233(20)
Index 253
Angel Ramos received the BS in Telecommunication Engineering, the MS in Electronic Engineering and the PhD in Electronic, Automatic and Communication Engineering from Universitat Rovira i Virgili (URV), Tarragona, Spain, in 2010, 2011 and 2015, respectively. Since 2015, he works as a Research Fellow at Laboratoire de Conception et dIntegration des Systemes (LCIS), Grenoble-INP, France. He is the author or co-author of 14 peer-reviewed journal papers and 12 international conference papers. He has worked as a reviewer for IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave and Wireless Components Letters, and IEEE Sensors Journal, among others. His research interests are: radar applied to remote sensing, RFID, UWB and wireless sensors. Antonio Lazaro received the M.S. and Ph.D. degrees in telecommunication engineering from the Universitat Politčcnica de Catalunya (UPC), Barcelona, Spain, in 1994 and 1999, respectively. Since 2004, he joined the Department of Electronic Engineering, Universitat Rovira i Virgili (URV), Tarragona, Spain, where he teaches courses on microwave circuits and antennas. His research interests are microwave device modelling, on-wafer noise measurements, advanced CMOS compact modelling, monolithic microwave integrated circuits (MMICs), RFMEMS, RFID, UWB radar applications, and wireless sensors. He has authored more than 80 peer-reviewed scientific journals, and several international, and national conference papers. He is member of IEEE and the editorial board of International Journal of Distributed Sensor Networks. He participates in several projects featuring RFID and microwave systems. David Girbau received the BS in Telecommunication Engineering, MS in Electronics Engineering and PhD in Telecommunication from Universitat Politčcnica de Catalunya (UPC), Barcelona, Spain, in 1998, 2002 and 2006. From 2001 to 2007 he was a Research Assistant with the UPC. From 2005 to 2007 he was a Part-Time Assistant Professor with the Universitat Autņnoma de Barcelona (UAB). In October 2007 he became a Full-Time Professor at Universitat Rovira i Virgili (URV). His research interests include microwave devices and systems, with emphasis on UWB, RFIDs, RF-MEMS and wireless sensors. He is author or co-author of 43 papers in indexed journals and more than 70 contributions to conferences. He serves as reviewer of several Journals in the field of microwaves and antennas. Ramón Villarino became a Member of IEEE in 2004, he received the Telecommunications Technical Engineering degree from the Ramon Llull University (URL), Barcelona, Spain in 1994, the Senior Telecommunications Engineering degree from the Polytechnic University of Catalonia (UPC), Barcelona, Spain in 2000 and the PhD from the UPC in 2004.During 2005-2006, he was a Research Associate at the Technological Telecommunications Center of Catalonia (CTTC), Barcelona, Spain. He worked at the Autonomous University of Catalonia (UAB) from 2006 to 2008 as a Researcher and Assistant Professor. Since January 2009 he is a Full-Time Professor at Universitat Rovira i Virgili (URV). His research activities are oriented to radiometry, microwave devices and systems, based on UWB, RFIDs and frequency selective structures using MetaMaterials (MM).