Atjaunināt sīkdatņu piekrišanu

E-grāmata: Rigidity in Higher Rank Abelian Group Actions: Volume 1, Introduction and Cocycle Problem

(West Chester University, Pennsylvania), (Pennsylvania State University)
  • Formāts: PDF+DRM
  • Sērija : Cambridge Tracts in Mathematics
  • Izdošanas datums: 16-Jun-2011
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781139088978
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 132,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Cambridge Tracts in Mathematics
  • Izdošanas datums: 16-Jun-2011
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781139088978
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"In a very general sense modern theory of smooth dynamical systems deals with smooth actions of "sufficiently large but not too large" groups or semigroups (usually locally compact but not compact) on a "sufficiently small" phase space (usually compact, or, sometimes, finite volume manifolds). Important branches of dynamics specifically consider actions preserving a geometric structure with an infinite-dimensional group of automorphisms, two principal examples being a volume and a symplectic structure. The natural equivalence relation for actions is differentiable (corr. volume preserving or symplectic) conjugacy"--

"This self-contained monograph presents rigidity theory for a large class of dynamical systems, differentiable higher rank hyperbolic and partially hyperbolic actions. This first volume describes the subject in detail and develops the principal methods presently used in various aspects of the rigidity theory. Part I serves as an exposition and preparation, including a large collection of examples that are difficult to find in the existing literature. Part II focuses on cocycle rigidity, which serves as amodel for rigidity phenomena as well as a useful tool for studying them. The book is an ideal reference for applied mathematicians and scientists working in dynamical systems and a useful introduction for graduate students interested in entering the field. Its wealth of examples also makes it excellent supplementary reading for any introductory course in dynamical systems"--

Provided by publisher.

Recenzijas

"This very welcome addition to the literature is the first book-length introduction to the rigidity of higher rand abelian group actions." David Michael Fisher for Mathematical Reviews

Papildus informācija

Ideal for researchers in all aspects of dynamical systems and a useful introduction for graduate students entering the field.
Introduction: an overview 1(8)
Part I: Preliminaries from dynamics and analysis 9(122)
1 Definitions and general properties of abelian group actions
11(28)
1.1 Group actions, conjugacy, and related notions
11(1)
1.2 Functorial constructions
12(1)
1.3 Principal bundles
13(3)
1.4 Cocycles
16(3)
1.5 Roots and Weyl chambers for linear actions
19(1)
1.6 Algebraic actions
20(5)
1.7 Measurable and non-uniform differentiable setting
25(5)
1.8 Uniform differentiable setting
30(9)
2 Principal classes of algebraic actions
39(61)
2.1 Automorphisms of tori and (infra)nilmanifolds
39(14)
2.2 Actions of Zk, k > 2 on Lori and nilmanifolds
53(24)
2.3 Higher rank Rk-actions
77(15)
2.4 Affine actions beyond tori and nilmanifolds
92(8)
3 Preparatory results from analysis
100(31)
3.1 Introduction
100(1)
3.2 Preparatory norm estimates
101(8)
3.3 Journe's theorem
109(9)
3.4 The Jacobian along the stable leaves of a partially hyperbolic diffeomorphism
118(4)
3.5 Smooth regularity by Fourier method
122(4)
3.6 Real analytic regularity by Fourier method
126(2)
3.7 Smooth regularity via hypoelliptic theory
128(3)
Part II: Cocycles, cohomology, and rigidity 131(171)
4 First cohomology and rigidity for vector-valued cocycles
133(69)
4.1 Cocycles over general group actions: an overview
133(5)
4.2 Vector-valued cocycles in rank-one hyperbolic case
138(14)
4.3 Cocycles over partially hyperbolic systems
152(11)
4.4 Higher rank results for vector-valued cocycles
163(27)
4.5 Cocycles over generic Anosov actions
190(8)
4.6 Twisted cocycles
198(4)
5 First cohomology and rigidity for general cocycles
202(74)
5.1 Cocycles with values in compact abelian groups
202(5)
5.2 Introduction to rank-one results for non-abelian group-valued cocycles
207(3)
5.3 Calculation of cohomology for non-abelian cocycles over rank-one Anosov actions
210(9)
5.4 Invariant foliations for Lie group and diffeomorphism group-valued extensions
219(21)
5.5 Regularity results for non-abelian cocycles over rank-one Anosov actions
240(8)
5.6 Parry's general cohomological result for cocycles with compact non-abelian range
248(3)
5.7 Lift of regularity for the transfer map from measurable to Holder
251(3)
5.8 Periodic cycle functionals
254(5)
5.9 Non-abelian cocycles over TNS actions
259(10)
5.10 Rigidity of non-abelian cocycles over Cartan actions: K-theory approach
269(7)
6 Higher order cohomology
276(26)
6.1 Introduction to higher cohomology of group actions
276(3)
6.2 Cohomology for partially hyperbolic actions by toral automorphisms
279(20)
6.3 Cohomology for Weyl chamber flows
299(3)
References 302(9)
Index 311
Anatole Katok is Raymond N. Shibley Professor of Mathematics at Pennsylvania State University. Viorel Nitica is Professor of Mathematics at West Chester University, Pennsylvania.