Atjaunināt sīkdatņu piekrišanu

E-grāmata: Rings, Extensions, and Cohomology

Edited by (The University of Oklahoma, Norman, USA)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 200,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"Presenting the proceedings of a conference held recently at Northwestern University, Evanston, Illinois, on the occasion of the retirement of noted mathematician Daniel Zelinsky, this novel reference provides up-to-date coverage of topics in commutative and noncommutative ring extensions, especially those involving issues of separability, Galois theory, and cohomology."
Preface -- Contributors -- Daniel Zelinsky: An Appreciation /Andy R. Magid -- The Centralizer on H-Separable Skew Group Rings /Ricardo Alfaro and George Szeto -- Contributions of PI Theory to Azumaya Algebras /S. A. Amitsur -- Cocycles and Right Crossed Products /M. Beattie -- Engel-type Theorems for Lie Color Algebras /Jeffery Bergen and Piotr Grzeszczuk -- Constructing Maximal Commutative Subalgebras of Matrix Rings /William C. Brown -- Galois Extensions over Local Number Rings /Lindsay N. Childs -- Infinite Extensions of Simple Modules over Semisimple Lie Algebras /Randall P. Dahlberg -- Smoothing Coherent Torsion-free Sheaves /Amassa Fauntleroy -- Projective Covers and Quasi-Isomorphisms /Mark A. Goddard -- On Dihedral Algebras and Conjugate Splittings /Darrell E. Haile -- On H-Skew Polynomial Rings and Galois Extensions /Shuichi Ikehara and George Szeto -- Separability and the Jones Polynomial /Lars Kadison -- A Note on Grobner Bases and Reduced Ideals /T. Kambayashi -- Bicomplexes and Galois Cohomology /H. F. Kreimer -- Adjoining Idempotents /Andy R. Magid -- Separable Polynomials and Weak Henseliz.ations /Thomas McKenzie -- Faithful Representations of Lie Algebras over Power Series /Graydon Nelson -- Idealizers of Fractal Ideals in Free Group Algebras /Amnon Rosenmann -- Elements of Trace Zero in Central Simple Algebras /Myriam Rosset and Shmuel Rosset -- Canonical Modules and Factorality of Symmetric Algebras /Aron Simis, Bernd Ulrich, and Wolmer V. Vasconcelos -- Splitting Properties of Extensions of the Wedderburn Principal Theorem /Joseph A. Wehlen -- Index.
ANDY R. MAGID is George Lynn Cross Research Professor of Mathematics at the University of Oklahoma, Norman. The coeditor of two volumes of conference proceedings and the author or coauthor of three books and over 60 research papers, Dr. Magid is a member of the Mathematical Association of America and an officer of the American Mathematical Society. His primary research interests are in abstract algebra, especially the theory of algebraic groups and discrete groups and the applications of the former in the study of the representation theory of the latter. He received the B.A. degree (1966) in mathematics from the University of California at Berkeley and the Ph.D. degree (1969) in mathematics from Northwestern University, Evanston, Illinois.