Atjaunināt sīkdatņu piekrišanu

E-grāmata: Rippling: Meta-Level Guidance for Mathematical Reasoning

(Heriot-Watt University, Edinburgh), (University of Edinburgh), (ETH Zentrum, Switzerland),
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 130,86 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Rippling is a radically new technique for the automation of mathematical reasoning. It is widely applicable whenever a goal is to be proved from one or more syntactically similar givens. It was originally developed for inductive proofs, where the goal was the induction conclusion and the givens were the induction hypotheses. It has proved to be applicable to a much wider class of tasks, from summing series via analysis to general equational reasoning. The application to induction has especially important practical implications in the building of dependable IT systems, and provides solutions to issues such as the problem of combinatorial explosion. Rippling is the first of many new search control techniques based on formula annotation; some additional annotated reasoning techniques are also described here. This systematic and comprehensive introduction to rippling, and to the wider subject of automated inductive theorem proving, will be welcomed by researchers and graduate students alike.

Papildus informācija

A unique, systematic and comprehensive introduction to rippling and to the wider subject of automated inductive theorem proving.
Preface xi
Acknowledgments xiv
An introduction to rippling
1(23)
Overview
1(4)
The problem of automating reasoning
1(1)
Applications to formal methods
2(1)
Proof planning and how it helps
3(1)
Rippling: a common pattern of reasoning
3(2)
A logical calculus of rewriting
5(3)
Annotating formulas
8(1)
A simple example of rippling
9(3)
Using the given: fertilization
12(1)
Rewriting with wave-rules
12(2)
The preconditions of rippling
14(1)
The bi-directionality of rippling
15(1)
Proofs by mathematical induction
16(5)
Recursive data types
17(1)
Varieties of induction rule
18(2)
Rippling in inductive proofs
20(1)
The history of rippling
21(3)
Varieties of rippling
24(30)
Compound wave-fronts
24(4)
An example of wave-front splitting
24(1)
Maximally split normal form
25(1)
A promise redeemed
26(1)
Meta-rippling
27(1)
Unblocking rippling with simplification
27(1)
Rippling sideways and inwards
28(5)
An example of sideways rippling
29(2)
Universal variables in inductive proofs
31(1)
Revised preconditions for rippling
32(1)
Cancellation of inwards and outwards wave-fronts
32(1)
Rippling-in after weak fertilization
33(3)
An abstract example
33(1)
Another way to look at it
34(1)
A concrete example
35(1)
Rippling towards several givens
36(5)
An example using trees
36(2)
Shaken but not stirred
38(1)
Weakening wave-fronts
39(2)
Conditional wave-rules
41(3)
Rippling wave-fronts from given to goal
44(1)
Higher-order rippling
45(3)
Rippling to prove equations
48(2)
Relational rippling
50(3)
Summary
53(1)
Productive use of failure
54(28)
Eureka steps
54(2)
Precondition analysis and proof patching
56(2)
Revising inductions
58(3)
Failure analysis
59(1)
Patch: wave-front speculation
60(1)
Lemma discovery
61(6)
Failure analysis
61(1)
Patch: lemma speculation
62(2)
Alternative lemmas
64(2)
Patch: lemma calculation
66(1)
Generalizing conjectures
67(6)
Failure analysis
67(1)
Patch: sink speculation
68(2)
Alternative generalizations
70(3)
Case analysis
73(1)
Failure analysis
73(1)
Patch: casesplit calculation
73(1)
Rotate length conjecture revisited
74(4)
Rotate length: conjecture generalization
74(2)
Rotate length: lemma discovery
76(1)
An automated reasoning challenge
77(1)
Implementation and results
78(3)
Summary
81(1)
A formal account of rippling
82(36)
General preliminaries
82(4)
Terms and positions
83(1)
Substitution and rewriting
84(1)
Notation
85(1)
Properties of rippling
86(2)
Preliminaries
86(1)
Properties of rippling
87(1)
Implementing rippling: generate-and-test
88(4)
Embeddings
89(1)
Annotated terms and rippling
90(1)
Implementation
91(1)
Term annotation
92(4)
The role of annotation
92(1)
Formal definitions
93(3)
Structure-preserving rules
96(1)
Rippling using wave-rules
96(9)
Why ordinary rewriting is not enough
97(1)
Ground rippling
98(2)
Annotated matching
100(3)
(Non-ground) rippling
103(1)
Termination
104(1)
Orders on annotated terms
105(8)
Simple annotation
105(3)
Multi-hole annotation
108(2)
Termination under *
110(3)
Implementing rippling
113(5)
Dynamic wave-rule parsing
114(2)
Sinks and colors
116(2)
The scope and limitations of rippling
118(26)
Hit: bi-directionality in list reversal
118(2)
Hit: bi-conditional decision procedure
120(1)
Hit: reasoning about imperative programs
120(1)
Hit: lim+ theorem
121(1)
Hit: summing the binomial series
122(1)
Hit: meta-logical reasoning
123(1)
Hit: SAM's lemma
123(1)
What counts as a failure?
124(1)
Miss: mutual recursion
125(1)
Miss: commuted skeletons
126(1)
Miss: holeless wave-fronts
127(2)
Miss: inverting a tower
129(2)
Miss: difference removal
131(1)
Best-first rippling
132(1)
Rippling implementations and practical experience
133(1)
Summary
134(10)
From rippling to a general methodology
144(31)
A general-purpose annotation language
146(2)
Encoding constraints in proof search: some examples
148(12)
Example 1: encoding rippling and difference reduction
148(2)
Example 2: encoding basic ordered paramodulation and basic superposition
150(4)
Example 3: Encoding window inference
154(2)
Example 4: Proving theorems by reuse
156(3)
Summary
159(1)
Using annotations to implement abstractions
160(12)
Limitations of abstractions
160(2)
Abstractions on annotated terms
162(3)
Examples revisited
165(7)
Implementation
172(1)
Summary
173(2)
Conclusions
175(2)
Appendix 1 An annotated calculus and a unification algorithm
177(13)
An annotation calculus
177(6)
Unification algorithm
183(5)
Soundness and completeness
188(2)
Appendix 2 Definitions of functions used in this book
190(3)
References 193(7)
Index 200