|
|
xiii | |
|
|
xxv | |
Preface |
|
xxvii | |
Acknowledgments |
|
xxxiii | |
Acronyms |
|
xxxv | |
|
Part I Pseudoinverse-Based ZD Approach |
|
|
7 | (68) |
|
1 Redundancy Resolution via Pseudoinverse and ZD Models |
|
|
3 | (72) |
|
|
3 | (2) |
|
1.2 Problem Formulation and ZD Models |
|
|
5 | (4) |
|
1.2.1 Problem Formulation |
|
|
5 | (1) |
|
1.2.2 Continuous-Time ZD Model |
|
|
6 | (1) |
|
1.2.3 Discrete-Time ZD Models |
|
|
7 | (1) |
|
1.2.3.1 Euler-Type DTZD Model with (t) Known |
|
|
7 | (1) |
|
1.2.3.2 Euler-Type DTZD Model with (t) Unknown |
|
|
7 | (1) |
|
1.2.3.3 Taylor-Type DTZD Models |
|
|
8 | (1) |
|
1.3 ZD Applications to Different-Type Robot Manipulators |
|
|
9 | (65) |
|
1.3.1 Application to a Five-Link Planar Robot Manipulator |
|
|
9 | (3) |
|
1.3.2 Application to a Three-Link Planar Robot Manipulator |
|
|
12 | (2) |
|
|
14 | (1) |
|
Part II Inverse-Free Simple Approach |
|
|
15 | (2) |
|
2 G1 Type Scheme to JVL Inverse Kinematics |
|
|
17 | (1) |
|
|
17 | (1) |
|
2.2 Preliminaries and Related Work |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (1) |
|
2.4.1 Square-Path Tracking Task |
|
|
19 | (3) |
|
2.4.2 "Z"-Shaped Path Tracking Task |
|
|
22 | (3) |
|
|
25 | (1) |
|
|
26 | (1) |
|
3 D1G1 Type Scheme to JAL Inverse Kinematics |
|
|
27 | (10) |
|
|
27 | (1) |
|
3.2 Preliminaries and Related Work |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (7) |
|
3.4.1 Rhombus-Path Tracking Task |
|
|
29 | (1) |
|
|
29 | (1) |
|
|
30 | (2) |
|
3.4.2 Triangle-Path Tracking Task |
|
|
32 | (4) |
|
|
36 | (1) |
|
4 Z1G1 Type Scheme to JAL Inverse Kinematics |
|
|
37 | (10) |
|
|
37 | (1) |
|
4.2 Problem Formulation and Z1G1 Type Scheme |
|
|
37 | (1) |
|
|
38 | (7) |
|
4.3.1 Desired Initial Position |
|
|
38 | (2) |
|
4.3.1.1 Isosceles-Trapezoid Path Tracking |
|
|
40 | (1) |
|
4.3.1.2 Isosceles-Triangle Path Tracking |
|
|
41 | (1) |
|
4.3.1.3 Square Path Tracking |
|
|
42 | (2) |
|
4.3.2 Nondesired Initial Position |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (2) |
|
Part III QP Approach and Unification |
|
|
47 | (20) |
|
5 Redundancy Resolution via QP Approach and Unification |
|
|
49 | (18) |
|
|
49 | (1) |
|
|
50 | (2) |
|
5.3 Handling Joint Physical Limits |
|
|
52 | (1) |
|
5.3.1 Joint-Velocity Level |
|
|
52 | (1) |
|
5.3.2 Joint-Acceleration Level |
|
|
52 | (1) |
|
|
53 | (1) |
|
5.5 Various Performance Indices |
|
|
54 | (2) |
|
5.5.1 Resolved at Joint-Velocity Level |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
5.5.2 Resolved at Joint-Acceleration Level |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
56 | (1) |
|
5.6 Unified QP Formulation |
|
|
56 | (1) |
|
|
57 | (4) |
|
5.7.1 Traditional QP Routines |
|
|
57 | (1) |
|
|
57 | (1) |
|
5.7.3 Dual Neural Network |
|
|
57 | (1) |
|
5.7.4 LVI-Aided Primal-Dual Neural Network |
|
|
57 | (2) |
|
5.7.5 Numerical Algorithms E47 and 94LVI |
|
|
59 | (1) |
|
5.7.5.1 Numerical Algorithm E47 |
|
|
59 | (1) |
|
5.7.5.2 Numerical Algorithm 94LVI |
|
|
59 | (2) |
|
|
61 | (5) |
|
|
66 | (1) |
|
Part IV Illustrative JVLQP Schemes and Performances |
|
|
67 | (70) |
|
6 Varying Joint-Velocity Limits Handled by QP |
|
|
69 | (26) |
|
|
69 | (1) |
|
6.2 Preliminaries and Problem Formulation |
|
|
70 | (6) |
|
6.2.1 Six-DOF Planar Robot System |
|
|
70 | (3) |
|
6.2.2 Varying Joint-Velocity Limits |
|
|
73 | (3) |
|
6.3 94LVI Assisted QP Solution |
|
|
76 | (1) |
|
6.4 Computer Simulations and Physical Experiments |
|
|
77 | (15) |
|
6.4.1 Line-Segment Path-Tracking Task |
|
|
77 | (8) |
|
6.4.2 Elliptical-Path Tracking Task |
|
|
85 | (2) |
|
6.4.3 Simulations with Faster Tasks |
|
|
87 | (1) |
|
6.4.3.1 Line-Segment-Path-Tracking Task |
|
|
87 | (2) |
|
6.4.3.2 Elliptical-Path-Tracking Task |
|
|
89 | (3) |
|
|
92 | (3) |
|
7 Feedback-Aided Minimum Joint Motion |
|
|
95 | (26) |
|
|
95 | (2) |
|
7.2 Preliminaries and Problem Formulation |
|
|
97 | (4) |
|
7.2.1 Minimum Joint Motion Performance Index |
|
|
97 | (3) |
|
7.2.2 Varying Joint-Velocity Limits |
|
|
100 | (1) |
|
7.3 Computer Simulations and Physical Experiments |
|
|
101 | (18) |
|
7.3.1 "M"-Shaped Path-Tracking Task |
|
|
101 | (1) |
|
7.3.1.1 Simulation Comparisons with Different Kp |
|
|
101 | (2) |
|
7.3.1.2 Simulation Comparisons with Different γ |
|
|
103 | (2) |
|
7.3.1.3 Simulative and Experimental Verifications of FAMJM Scheme |
|
|
105 | (2) |
|
7.3.2 "P"-Shaped Path Tracking Task |
|
|
107 | (1) |
|
7.3.3 Comparisons with Pseudoinverse-Based Approach |
|
|
108 | (2) |
|
7.3.3.1 Comparison with Tracking Task of Larger "M"-Shaped Path |
|
|
110 | (2) |
|
7.3.3.2 Comparison with Tracking Task of Larger "P"-Shaped Path |
|
|
112 | (7) |
|
|
119 | (2) |
|
8 QP Based Manipulator State Adjustment |
|
|
121 | (16) |
|
|
121 | (1) |
|
8.2 Preliminaries and Scheme Formulation |
|
|
122 | (2) |
|
8.3 QP Solution and Control of Robot Manipulator |
|
|
124 | (1) |
|
8.4 Computer Simulations and Comparisons |
|
|
125 | (7) |
|
8.4.1 State Adjustment without ZIV Constraint |
|
|
125 | (3) |
|
8.4.2 State Adjustment with ZIV Constraint |
|
|
128 | (4) |
|
|
132 | (4) |
|
|
136 | (1) |
|
Part V Self-Motion Planning |
|
|
137 | (62) |
|
9 QP-Based Self-Motion Planning |
|
|
139 | (22) |
|
|
139 | (1) |
|
9.2 Preliminaries and QP Formulation |
|
|
140 | (1) |
|
9.2.1 Self-Motion Criterion |
|
|
140 | (1) |
|
|
141 | (1) |
|
9.3 LVIAPDNN Assisted QP Solution |
|
|
141 | (1) |
|
9.4 PUMA560 Based Computer Simulations |
|
|
142 | (10) |
|
9.4.1 From Initial Configuration A to Desired Configuration B |
|
|
144 | (2) |
|
9.4.2 From Initial Configuration A to Desired Configuration C |
|
|
146 | (1) |
|
9.4.3 From Initial Configuration E to Desired Configuration F |
|
|
147 | (5) |
|
9.5 PA10 Based Computer Simulations |
|
|
152 | (6) |
|
|
158 | (3) |
|
10 Pseudoinverse Method and Singularities Discussed |
|
|
161 | (22) |
|
|
161 | (1) |
|
10.2 Preliminaries and Scheme Formulation |
|
|
162 | (2) |
|
10.2.1 Modified Performance Index for SMP |
|
|
163 | (1) |
|
10.2.2 QP-Based SMP Scheme Formulation |
|
|
163 | (1) |
|
10.3 LVIAPDNN Assisted QP Solution with Discussion |
|
|
164 | (3) |
|
10.4 Computer Simulations |
|
|
167 | (13) |
|
10.4.1 Three-Link Redundant Planar Manipulator |
|
|
168 | (1) |
|
|
168 | (3) |
|
|
171 | (1) |
|
10.4.2 PUMA560 Robot Manipulator |
|
|
172 | (4) |
|
10.4.3 PA10 Robot Manipulator |
|
|
176 | (4) |
|
|
180 | (3) |
|
|
181 | (1) |
|
Equivalence Analysis in Limit Situation |
|
|
181 | (2) |
|
11 Self-Motion Planning with ZIV Constraint |
|
|
183 | (16) |
|
|
183 | (1) |
|
11.2 Preliminaries and Scheme Formulation |
|
|
184 | (4) |
|
11.2.1 Handling Joint Physical Limits |
|
|
184 | (3) |
|
|
187 | (1) |
|
11.2.3 Design of ZIV Constraint |
|
|
187 | (1) |
|
11.3 E47 Assisted QP Solution |
|
|
188 | (1) |
|
11.4 Computer Simulations and Physical Experiments |
|
|
189 | (8) |
|
|
197 | (2) |
|
Part VI Manipulability Maximization |
|
|
199 | (28) |
|
12 Manipulability-Maximizing SMP Scheme |
|
|
201 | (10) |
|
|
201 | (1) |
|
|
202 | (2) |
|
12.2.1 Derivation of Manipulability Index |
|
|
202 | (1) |
|
12.2.2 Handling Physical Limits |
|
|
203 | (1) |
|
|
203 | (1) |
|
12.3 Computer Simulations and Physical Experiments |
|
|
204 | (5) |
|
12.3.1 Computer Simulations |
|
|
204 | (1) |
|
12.3.2 Physical Experiments |
|
|
205 | (4) |
|
|
209 | (2) |
|
13 Time-Varying Coefficient Aided MM Scheme |
|
|
211 | (16) |
|
|
211 | (1) |
|
13.2 Manipulability-Maximization with Time-Varying Coefficient |
|
|
212 | (4) |
|
13.2.1 Nonzero Initial/Final Joint-Velocity Problem |
|
|
212 | (1) |
|
13.2.2 Scheme Formulation |
|
|
213 | (2) |
|
13.2.3 94LVI Assisted QP Solution |
|
|
215 | (1) |
|
13.3 Computer Simulations and Physical Experiments |
|
|
216 | (10) |
|
13.3.1 Computer Simulations |
|
|
216 | (8) |
|
13.3.2 Physical Experiments |
|
|
224 | (2) |
|
|
226 | (1) |
|
Part VII Encoder Feedback and Joystick Control |
|
|
227 | (34) |
|
14 QP Based Encoder Feedback Control |
|
|
229 | (22) |
|
|
229 | (2) |
|
14.2 Preliminaries and Scheme Formulation |
|
|
231 | (3) |
|
|
231 | (1) |
|
|
231 | (3) |
|
14.3 Computer Simulations |
|
|
234 | (6) |
|
14.3.1 Petal-Shaped Path-Tracking Task |
|
|
234 | (4) |
|
14.3.2 Comparative Simulations |
|
|
238 | (1) |
|
14.3.2.1 Petal-Shaped Path Tracking Using Another Group of Joint-Angle Limits |
|
|
238 | (1) |
|
14.3.2.2 Petal-Shaped Path Tracking via the Method 4 (M4) Algorithm |
|
|
238 | (1) |
|
14.3.3 Hexagonal-Path-Tracking Task |
|
|
239 | (1) |
|
14.4 Physical Experiments |
|
|
240 | (8) |
|
|
248 | (3) |
|
15 QP Based Joystick Control |
|
|
251 | (10) |
|
|
251 | (1) |
|
15.2 Preliminaries and Hardware System |
|
|
251 | (2) |
|
15.2.1 Velocity-Specified Inverse Kinematics Problem |
|
|
252 | (1) |
|
15.2.2 Joystick-Controlled Manipulator Hardware System |
|
|
252 | (1) |
|
|
253 | (1) |
|
15.3.1 Cosine-Aided Position-to-Velocity Mapping |
|
|
253 | (1) |
|
15.3.2 Real-Time Joystick-Controlled Motion Planning |
|
|
254 | (1) |
|
15.4 Computer Simulations and Physical Experiments |
|
|
254 | (5) |
|
15.4.1 Movement Toward Four Directions |
|
|
255 | (4) |
|
15.4.2 "MVN" Letter Writing |
|
|
259 | (1) |
|
|
259 | (2) |
References |
|
261 | (16) |
Index |
|
277 | |