Preface |
|
vii | |
|
1 Poincare Map Technique, Smale Horseshoe, and Symbolic Dynamics |
|
|
1 | (26) |
|
1.1 Poincare and generalized Poincare mappings |
|
|
1 | (3) |
|
1.2 Interval methods for calculating Poincare mappings |
|
|
4 | (6) |
|
1.2.1 Existence of periodic orbits |
|
|
6 | (1) |
|
1.2.2 Interval arithmetic |
|
|
7 | (3) |
|
|
10 | (7) |
|
1.3.1 Dynamics of the horseshoe map |
|
|
12 | (5) |
|
|
17 | (7) |
|
1.4.1 The method of fixed point index |
|
|
19 | (5) |
|
|
24 | (3) |
|
|
27 | (12) |
|
|
27 | (7) |
|
2.1.1 Concepts and definitions |
|
|
27 | (2) |
|
|
29 | (3) |
|
2.1.3 Domains of attraction |
|
|
32 | (2) |
|
2.2 Density and robustness of chaos |
|
|
34 | (1) |
|
2.3 Persistence and robustness of chaos |
|
|
35 | (1) |
|
|
36 | (3) |
|
3 Statistical Properties of Chaotic Attractors |
|
|
39 | (22) |
|
|
39 | (11) |
|
3.1.1 Lebesgue (volume) measure |
|
|
39 | (1) |
|
3.1.2 Physical (or Sinai--Ruelle--Bowen) measure |
|
|
40 | (2) |
|
3.1.3 Hausdorff dimension |
|
|
42 | (1) |
|
3.1.4 The topological entropy |
|
|
43 | (4) |
|
|
47 | (3) |
|
|
50 | (1) |
|
3.3 Statistical properties of chaotic attractors |
|
|
51 | (6) |
|
3.3.1 Autocorrelation function (ACF) |
|
|
51 | (2) |
|
|
53 | (4) |
|
|
57 | (4) |
|
|
61 | (19) |
|
4.1 The concept of structural stability |
|
|
61 | (16) |
|
4.1.1 Conditions for structural stability |
|
|
62 | (2) |
|
4.1.2 A proof of Anosov's theorem on structural stability of diffeomorphisms |
|
|
64 | (13) |
|
|
77 | (3) |
|
5 Transversality, Invariant Foliation, and the Shadowing Lemma |
|
|
80 | (15) |
|
|
80 | (2) |
|
|
82 | (2) |
|
|
84 | (9) |
|
5.3.1 Homoclinic orbits and shadowing |
|
|
88 | (2) |
|
5.3.2 Shilnikov criterion for the existence of chaos |
|
|
90 | (3) |
|
|
93 | (2) |
|
6 Chaotic Attractors with Hyperbolic Structure |
|
|
95 | (72) |
|
|
96 | (6) |
|
6.1.1 Concepts and definitions |
|
|
96 | (1) |
|
6.1.2 Anosov diffeomorphisms and Anosov flows |
|
|
97 | (5) |
|
6.2 Anosov diffeomorphisms on the torus Tn |
|
|
102 | (10) |
|
6.2.1 Anosov automorphisms |
|
|
102 | (1) |
|
6.2.2 Structure of Anosov diffeomorphisms |
|
|
103 | (1) |
|
6.2.3 Anosov torus Tn with a hyperbolic structure |
|
|
104 | (1) |
|
|
105 | (2) |
|
6.2.5 The Blaschke product |
|
|
107 | (1) |
|
|
108 | (3) |
|
|
111 | (1) |
|
6.3 Classification of strange attractors of dynamical systems |
|
|
112 | (2) |
|
6.4 Properties of hyperbolic chaotic attractors |
|
|
114 | (7) |
|
6.4.1 Geodesic flows on compact smooth manifolds |
|
|
115 | (2) |
|
6.4.2 The solenoid attractor |
|
|
117 | (2) |
|
6.4.3 The Smale--Williams solenoid |
|
|
119 | (1) |
|
|
120 | (1) |
|
6.5 Proof of the hyperbolicity of the logistic map for μ > 4 |
|
|
121 | (5) |
|
6.6 Generalized hyperbolic attractors |
|
|
126 | (8) |
|
6.7 Generating hyperbolic attractors |
|
|
134 | (4) |
|
6.8 Density of hyperbolicity and homoclinic bifurcations in arbitrary dimension |
|
|
138 | (1) |
|
|
139 | (15) |
|
6.9.1 Numerical procedure |
|
|
141 | (3) |
|
6.9.2 Testing hyperbolicity of the Henon map |
|
|
144 | (9) |
|
6.9.3 Testing hyperbolicity of the forced damped pendulum |
|
|
153 | (1) |
|
6.10 Uniform hyperbolicity test |
|
|
154 | (4) |
|
|
158 | (9) |
|
7 Robust Chaos in Hyperbolic Systems |
|
|
167 | (41) |
|
7.1 Modeling hyperbolic attractors |
|
|
167 | (37) |
|
7.1.1 Modeling the Smale--Williams attractor |
|
|
168 | (8) |
|
7.1.2 Testing hyperbolicity of system (7.1) |
|
|
176 | (7) |
|
7.1.3 Numerical verification of the hyperbolicity of system (7.1) |
|
|
183 | (4) |
|
7.1.4 Modeling the Arnold cat map |
|
|
187 | (7) |
|
7.1.5 Modeling the Bernoulli map |
|
|
194 | (8) |
|
7.1.6 Modeling Plykin's attractor |
|
|
202 | (2) |
|
|
204 | (4) |
|
|
208 | (50) |
|
8.1 Lorenz-type attractors |
|
|
208 | (2) |
|
|
210 | (29) |
|
8.2.1 Existence of Lorenz-type attractors |
|
|
211 | (9) |
|
8.2.2 Geometric models of the Lorenz equation |
|
|
220 | (10) |
|
8.2.3 Structure of the Lorenz attractor |
|
|
230 | (9) |
|
8.3 Expanding and contracting Lorenz attractors |
|
|
239 | (2) |
|
8.4 Wild strange attractors and pseudo-hyperbolicity |
|
|
241 | (12) |
|
8.5 Lorenz-type attractors realized in two-dimensional maps |
|
|
253 | (2) |
|
|
255 | (3) |
|
9 Robust Chaos in the Lorenz-Type Systems |
|
|
258 | (14) |
|
9.1 Robust chaos in the Lorenz-type attractors |
|
|
258 | (2) |
|
9.2 Robust chaos in Lorenz system |
|
|
260 | (7) |
|
9.3 Robust chaos in 2-D Lorenz-type attractors |
|
|
267 | (2) |
|
|
269 | (3) |
|
10 No Robust Chaos in Quasi-Attractors |
|
|
272 | (31) |
|
10.1 Quasi-attractors, concepts, and properties |
|
|
273 | (2) |
|
|
275 | (11) |
|
10.2.1 Uniform hyperbolicity of the Henon map |
|
|
276 | (5) |
|
10.2.2 Hyperbolicity of Henon-like maps |
|
|
281 | (1) |
|
10.2.3 Henon attractor is a quasi-attractor |
|
|
282 | (4) |
|
10.3 The Strelkova--Anishchenko map |
|
|
286 | (1) |
|
10.4 The Anishchenko--Astakhov oscillator |
|
|
286 | (2) |
|
|
288 | (11) |
|
10.5.1 Homoclinic and heteroclinic orbits |
|
|
294 | (4) |
|
10.5.2 The geometric model |
|
|
298 | (1) |
|
|
299 | (4) |
|
11 Robust Chaos in One-Dimensional Maps |
|
|
303 | (55) |
|
|
303 | (14) |
|
|
305 | (2) |
|
11.1.2 Relation between unimodality and hyperbolicity |
|
|
307 | (2) |
|
11.1.3 Classification of unimodal maps of the interval |
|
|
309 | (3) |
|
11.1.4 Collet-Eckmann maps |
|
|
312 | (2) |
|
11.1.5 Statistical properties of unimodal maps |
|
|
314 | (3) |
|
11.2 The Barreto--Hunt--Grebogi--Yorke conjecture |
|
|
317 | (25) |
|
11.2.1 Counter-examples to the Barreto--Hunt--Grebogi--Yorke conjecture |
|
|
324 | (8) |
|
11.2.2 Robust chaos without the period-n-tupling scenario |
|
|
332 | (3) |
|
11.2.3 The B-exponential map |
|
|
335 | (7) |
|
11.3 Border-collision bifurcation and robust chaos |
|
|
342 | (10) |
|
11.3.1 Normal form for piecewise-smooth one-dimensional maps |
|
|
342 | (1) |
|
11.3.2 Border-collision bifurcation scenarios |
|
|
343 | (6) |
|
11.3.3 Robust chaos in one-dimensional singular maps |
|
|
349 | (3) |
|
|
352 | (6) |
|
12 Robust Chaos in 2-D Piecewise-Smooth Maps |
|
|
358 | (43) |
|
12.1 Robust chaos in 2-D piecewise-smooth maps |
|
|
358 | (20) |
|
12.1.1 Normal form for 2-D piecewise-smooth maps |
|
|
359 | (1) |
|
12.1.2 Border-collision bifurcations and robust chaos |
|
|
360 | (2) |
|
12.1.3 Regions for nonrobust chaos |
|
|
362 | (5) |
|
12.1.4 Regions for robust chaos: undesirable and dangerous bifurcations |
|
|
367 | (3) |
|
12.1.5 Proof of unicity of orbits |
|
|
370 | (1) |
|
12.1.6 Proof of robust chaos |
|
|
371 | (7) |
|
12.2 Robust chaos in noninvertible piecewise-linear maps |
|
|
378 | (17) |
|
12.2.1 Normal forms for two-dimensional noninvertible maps |
|
|
380 | (2) |
|
12.2.2 Onset of chaos: Proof of robust chaos |
|
|
382 | (13) |
|
|
395 | (6) |
Bibliography |
|
401 | (50) |
Index |
|
451 | |