Atjaunināt sīkdatņu piekrišanu

E-grāmata: Robust Optimization

4.20/5 (10 ratings by Goodreads)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 97,93 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Robust optimization is a fairly new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. The authors are the principal developers of robust optimization.



Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject.Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution.The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations.An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.

Recenzijas

"Robust optimization is an active area of research that is likely to find many practical applications in the future. This book is an authoritative reference that will be very useful to researchers working in this area. Furthermore, the book has been structured so that the first part could easily be used as the text for a graduate level course in robust optimization."--Brian Borchers, MAA Reviews "[ T]his reference book gives an excellent and stimulating account of the classical and advanced results in the field, and should be consulted by all researchers and practitioners."--Joseph Frederic Bonnans, Zentralblatt MATH

Preface ix
Part I. Robust Linear Optimization
1(146)
Uncertain Linear Optimization Problems and their Robust Counterparts
3(24)
Data Uncertainty in Linear Optimization
3(4)
Uncertain Linear Problems and their Robust Counterparts
7(9)
Tractability of Robust Counterparts
16(7)
Non-Affine Perturbations
23(2)
Exercises
25(1)
Notes and Remarks
25(2)
Robust Counterpart Approximations of Scalar Chance Constraints
27(40)
How to Specify an Uncertainty Set
27(1)
Chance Constraints and their Safe Tractable Approximations
28(3)
Safe Tractable Approximations of Scalar Chance Constraints: Basic Examples
31(13)
Extensions
44(16)
Exercises
60(4)
Notes and Remarks
64(3)
Globalized Robust Counterparts of Uncertain LO Problems
67(14)
Globalized Robust Counterpart---Motivation and Definition
67(2)
Computational Tractability of GRC
69(1)
Example: Synthesis of Antenna Arrays
70(9)
Exercises
79(1)
Notes and Remarks
79(2)
More on Safe Tractable Approximations of Scalar Chance Constraints
81(66)
Robust Counterpart Representation of a Safe Convex Approximation to a Scalar Chance Constraint
81(2)
Bernstein Approximation of a Chance Constraint
83(7)
From Bernstein Approximation to Conditional Value at Risk and Back
90(15)
Majorization
105(4)
Beyond the Case of Independent Linear Perturbations
109(27)
Exercises
136(9)
Notes and Remarks
145(2)
Part II. Robust Conic Optimization
147(192)
Uncertain Conic Optimization: The Concepts
149(10)
Uncertain Conic Optimization: Preliminaries
149(2)
Robust Counterpart of Uncertain Conic Problem: Tractability
151(2)
Safe Tractable Approximations of RCs of Uncertain Conic Inequalities
153(3)
Exercises
156(1)
Notes and Remarks
157(2)
Uncertain Conic Quadratic Problems with Tractable RCs
159(20)
A Generic Solvable Case: Scenario Uncertainty
159(1)
Solvable Case I: Simple Interval Uncertainty
160(1)
Solvable Case II: Unstructured Norm-Bounded Uncertainty
161(4)
Solvable Case III: Convex Quadratic Inequality with Unstructured Norm-Bounded Uncertainty
165(2)
Solvable Case IV: CQI with Simple Ellipsoidal Uncertainty
167(6)
Illustration: Robust Linear Estimation
173(5)
Exercises
178(1)
Notes and Remarks
178(1)
Approximating RCs of Uncertain Conic Quadratic Problems
179(24)
Structured Norm-Bounded Uncertainty
179(16)
The Case of Ellipsoidal Uncertainty
195(6)
Exercises
201(1)
Notes and Remarks
201(2)
Uncertain Semidefinite Problems with Tractable RCs
203(22)
Uncertain Semidefinite Problems
203(1)
Tractability of RCs of Uncertain Semidefinite Problems
204(18)
Exercises
222(1)
Notes and Remarks
222(3)
Approximating RCs of Uncertain Semidefinite Problems
225(10)
Tight Tractable Approximations of RCs of Uncertain SDPs with Structured Norm-Bounded Uncertainty
225(7)
Exercises
232(2)
Notes and Remarks
234(1)
Approximating Chance Constrained CQIs and LMIs
235(44)
Chance Constrained LMIs
235(5)
The Approximation Scheme
240(12)
Gaussian Majorization
252(3)
Chance Constrained LMIs: Special Cases
255(21)
Notes and Remarks
276(3)
Globalized Robust Counterparts of Uncertain Conic Problems
279(22)
Globalized Robust Counterparts of Uncertain Conic Problems: Definition
279(2)
Safe Tractable Approximations of GRCs
281(1)
GRC of Uncertain Constraint: Decomposition
282(2)
Tractability of GRCs
284(8)
Illustration: Robust Analysis of Nonexpansive Dynamical Systems
292(9)
Robust Classification and Estimation
301(38)
Robust Support Vector Machines
301(8)
Robust Classification and Regression
309(16)
Affine Uncertainty Models
325(6)
Random Affine Uncertainty Models
331(5)
Exercises
336(1)
Notes and remarks
337(2)
Part III. Robust Multi-Stage Optimization
339(76)
Robust Markov Decision Processes
341(14)
Markov Decision Processes
341(4)
The Robust MDP Problems
345(2)
The Robust Bellman Recursion on Finite Horizon
347(5)
Notes and Remarks
352(3)
Robust Adjustable Multistage Optimization
355(60)
Adjustable Robust Optimization: Motivation
355(2)
Adjustable Robust Counterpart
357(11)
Affinely Adjustable Robust Counterparts
368(24)
Adjustable Robust Optimization and Synthesis of Linear Controllers
392(16)
Exercises
408(3)
Notes and Remarks
411(4)
PART IV. Selected Applications
415(32)
Selected Applications
417(30)
Robust Linear Regression and Manufacturing of TV Tubes
417(4)
Inventory Management with Flexible Commitment Contracts
421(11)
Controlling a Multi-Echelon Multi-Period Supply Chain
432(15)
Appendix A. Notation and Prerequisites
447(22)
Notation
447(1)
Conic Programming
448(12)
Efficient Solvability of Convex Programming
460(9)
Appendix B. Some Auxiliary Proofs
469(42)
Proofs for
Chapter 4
469(12)
S-Lemma
481(2)
Approximate S-Lemma
483(6)
Matrix Cube Theorem
489(17)
Proofs for
Chapter 10
506(5)
Appendix C. Solutions to Selected Exercises
511(20)
Chapter 1
511(1)
Chapter 2
511(2)
Chapter 3
513(1)
Chapter 4
513(3)
Chapter 5
516(3)
Chapter 6
519(1)
Chapter 7
520(1)
Chapter 8
521(2)
Chapter 9
523(2)
Chapter 12
525(2)
Chapter 14
527(4)
Bibliography 531(8)
Index 539
Aharon Ben-Tal is professor of operations research at the Technion, Israel Institute for Technology. Laurent El Ghaoui is associate professor of electrical engineering and operations research at the University of California, Berkeley. Arkadi Nemirovski is professor of industrial and systems engineering at Georgia Institute of Technology.